scholarly journals Unfolded and intermediate states of PrP play a key role in the mechanism of action of an antiprion chaperone

2021 ◽  
Vol 118 (9) ◽  
pp. e2010213118
Author(s):  
Rafayel Petrosyan ◽  
Shubhadeep Patra ◽  
Negar Rezajooei ◽  
Craig R. Garen ◽  
Michael T. Woodside

Prion and prion-like diseases involve the propagation of misfolded protein conformers. Small-molecule pharmacological chaperones can inhibit propagated misfolding, but how they interact with disease-related proteins to prevent misfolding is often unclear. We investigated how pentosan polysulfate (PPS), a polyanion with antiprion activity in vitro and in vivo, interacts with mammalian prion protein (PrP) to alter its folding. Calorimetry showed that PPS binds two sites on natively folded PrP, but one PPS molecule can bind multiple PrP molecules. Force spectroscopy measurements of single PrP molecules showed PPS stabilizes not only the native fold of PrP but also many different partially folded intermediates that are not observed in the absence of PPS. PPS also bound tightly to unfolded segments of PrP, delaying refolding. These observations imply that PPS can act through multiple possible modes, inhibiting misfolding not only by stabilizing the native fold or sequestering natively folded PrP into aggregates, as proposed previously, but also by binding to partially or fully unfolded states that play key roles in mediating misfolding. These results underline the likely importance of unfolded states as critical intermediates on the prion conversion pathway.

Author(s):  
Naresh Damuka ◽  
Miranda Orr ◽  
Paul W. Czoty ◽  
Jeffrey L. Weiner ◽  
Thomas J. Martin ◽  
...  

AbstractMicrotubules (MTs) are structural units in the cytoskeleton. In brain cells they are responsible for axonal transport, information processing, and signaling mechanisms. Proper function of these processes is critical for healthy brain functions. Alcohol and substance use disorders (AUD/SUDs) affects the function and organization of MTs in the brain, making them a potential neuroimaging marker to study the resulting impairment of overall neurobehavioral and cognitive processes. Our lab reported the first brain-penetrant MT-tracking Positron Emission Tomography (PET) ligand [11C]MPC-6827 and demonstrated its in vivo utility in rodents and non-human primates. To further explore the in vivo imaging potential of [11C]MPC-6827, we need to investigate its mechanism of action. Here, we report preliminary in vitro binding results in SH-SY5Y neuroblastoma cells exposed to ethanol (EtOH) or cocaine in combination with multiple agents that alter MT stability. EtOH and cocaine treatments increased MT stability and decreased free tubulin monomers. Our initial cell-binding assay demonstrated that [11C]MPC-6827 may have high affinity to free/unbound tubulin units. Consistent with this mechanism of action, we observed lower [11C]MPC-6827 uptake in SH-SY5Y cells after EtOH and cocaine treatments (e.g., fewer free tubulin units). We are currently performing in vivo PET imaging and ex vivo biodistribution studies in rodent and nonhuman primate models of AUD and SUDs and Alzheimer's disease.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


Cartilage ◽  
2021 ◽  
pp. 194760352110235
Author(s):  
Hongjun Zhang ◽  
Wendi Zheng ◽  
Du Li ◽  
Jia Zheng

Objective miR-146a-5p was found to be significantly upregulated in cartilage tissue of patients with osteoarthritis (OA). NUMB was shown to be involved in the autophagy regulation process of cells. We aimed to learn whether NUMB was involved in the apoptosis or autophagy process of chondrocytes in OA and related with miR-146a-5p. Methods QRT-PCR was used to detect miR-146a-5p level in 22 OA cartilage tissues and 22 controls. The targets of miR-146a-5p were analyzed using software and the luciferase reporter experiment. The apoptosis and autophagy, and related proteins were detected in chondrocytes treated with miR-146a-5p mimic/inhibitor or pcDNA3.1-NUMB/si-NUMB and IL-1β, respectively. In vivo experiment, intra-articular injection of miR-146a-5p antagomir/NC was administered at the knee of OA male mice before and after model construction. Chondrocyte apoptosis and the expression of apoptosis and autophagy-related proteins were also detected. Results miR-146a-5p was highly expressed in knee cartilage tissue of patients with OA, while NUMB was lowly expressed and negatively regulated by miR-146a-5p. Upregulation of miR-146a-5p can promote cell apoptosis and reduce autophagy of human and mouse chondrocytes by modulating the levels of cleaved caspase-3, cleaved PARP, Bax, Beclin 1, ATG5, p62, LC3-I, and LC3-II. Increasing the low level of NUMB reversed the effects of miR-146a-5p on chondrocyte apoptosis and autophagy. Intra-articular injection of miR-146a-5p antagomir can also reverse the effects of miR-146a-5p on the apoptosis and autophagy of knee joint chondrocytes in OA mice. Conclusion Downregulation of miR-146a-5p suppresses the apoptosis and promotes autophagy of chondrocytes by targeting NUMB in vivo and in vitro.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S730-S730
Author(s):  
Yoshinori Yamano ◽  
Rio Nakamura ◽  
Miki Takemura ◽  
Roger Echols

Abstract Background Cefiderocol (CFDC) is a novel siderophore, iron-chelating cephalosporin, which is transported into bacteria via iron transporters. CFDC has potent in vitro and in vivo activity against all aerobic Gram-negative bacteria, including carbapenem-resistant strains. To date, clinical isolates with cefiderocol MIC >4 µg/mL have been found infrequently, in which the presence of a few β-lactamases or altered iron transport was found. We investigated potential new mechanisms causing CFDC MIC increases in non-clinical studies. Methods The mutation positions were determined by whole genome sequencing using four K. pneumoniae mutants including two KPC producers and one NDM producer that had shown CFDC MIC increases in previous in vitro resistance-acquisition studies. The mutant strains were obtained at the frequency of 10-7 to < 10-8 by spreading bacteria on standard Mueller‒Hinton agar medium containing CFDC at concentrations of 10× MIC, with or without apo-transferrin (20 μg/mL). CFDC MIC was determined by broth microdilution using iron-depleted cation-adjusted Mueller-Hinton broth based on Clinical and Laboratory Standards Institute guidelines. The emergence of MIC increase mutants was also assessed by in vitro chemostat models under humanized plasma pharmacokinetic exposures of CFDC. Results The possible resistance mechanisms were investigated. Mutation of baeS or envZ, sensors of two-component regulation systems, were found in three or two mutants among the tested four isolates, respectively, and caused the MIC to increase by 4–32-fold. The altered expression level of specific genes by the baeS or envZ mutation could affect CFDC susceptibility, but the specific genes have not been identified. In addition, the mutation of exbD, an accessory protein related to iron transport, was identified in one case and caused the MIC to increase by >8-fold. In vitro chemostat studies using two isolates (one NDM producer and one KPC producer) showed no resistance acquisition during 24-hour exposure. Table. Overview of mutation emergence in five isolates of K. pneumoniae Conclusion The mutation of two-component regulation systems (BaeSR and OmpR/EnvZ) and iron transport-related proteins were shown to be possible mechanisms causing CFDC MIC increases, but these mutants did not appear under human exposures. Disclosures Yoshinori Yamano, PhD, Shionogi & Co., Ltd. (Employee) Rio Nakamura, BSc, Shionogi & Co., Ltd. (Employee) Miki Takemura, MSc, Shionogi & Co., Ltd. (Employee) Roger Echols, MD, Shionogi Inc. (Consultant)


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dexin Shen ◽  
Yayun Fang ◽  
Fenfang Zhou ◽  
Zhao Deng ◽  
Kaiyu Qian ◽  
...  

Abstract Background CDCA3 is an important component of the E3 ligase complex with SKP1 and CUL1, which could regulate the progress of cell mitosis. CDCA3 has been widely identified as a proto-oncogene in multiple human cancers, however, its role in promoting human bladder urothelial carcinoma has not been fully elucidated. Methods Bioinformatic methods were used to analyze the expression level of CDCA3 in human bladder urothelial carcinoma tissues and the relationship between its expression level and key clinical characteristics. In vitro studies were performed to validate the specific functions of CDCA3 in regulating cell proliferation, cell migration and cell cycle process. Alterations of related proteins was investigated by western blot assays. In vivo studies were constructed to validate whether silencing CDCA3 could inhibit the proliferation rate in mice model. Results Bioinformatic analysis revealed that CDCA3 was significantly up-regulated in bladder urothelial carcinoma samples and was related to key clinical characteristics, such as tumor grade and metastasis. Moreover, patients who had higher expression level of CDCA3 tend to show a shorter life span. In vitro studies revealed that silencing CDCA3 could impair the migration ability of tumor cells via down-regulating EMT-related proteins such as MMP9 and Vimentin and inhibit tumor cell growth via arresting cells in the G1 cell cycle phase through regulating cell cycle related proteins like p21. In vivo study confirmed that silencing CDCA3 could inhibit the proliferation of bladder urothelial carcinoma cells. Conclusions CDCA3 is an important oncogene that could strengthen the migration ability of bladder urothelial carcinoma cells and accelerate tumor cell growth via regulating cell cycle progress and is a potential biomarker of bladder urothelial carcinoma.


Microbiology ◽  
2014 ◽  
Vol 160 (10) ◽  
pp. 2157-2169 ◽  
Author(s):  
Sudarson Sundarrajan ◽  
Junjappa Raghupatil ◽  
Aradhana Vipra ◽  
Nagalakshmi Narasimhaswamy ◽  
Sanjeev Saravanan ◽  
...  

P128 is an anti-staphylococcal protein consisting of the Staphylococcus aureus phage-K-derived tail-associated muralytic enzyme (TAME) catalytic domain (Lys16) fused with the cell-wall-binding SH3b domain of lysostaphin. In order to understand the mechanism of action and emergence of resistance to P128, we isolated mutants of Staphylococcus spp., including meticillin-resistant Staphylococcus aureus (MRSA), resistant to P128. In addition to P128, the mutants also showed resistance to Lys16, the catalytic domain of P128. The mutants showed loss of fitness as shown by reduced rate of growth in vitro. One of the mutants tested was found to show reduced virulence in animal models of S. aureus septicaemia suggesting loss of fitness in vivo as well. Analysis of the antibiotic sensitivity pattern showed that the mutants derived from MRSA strains had become sensitive to meticillin and other β-lactams. Interestingly, the mutant cells were resistant to the lytic action of phage K, although the phage was able to adsorb to these cells. Sequencing of the femA gene of three P128-resistant mutants showed either a truncation or deletion in femA, suggesting that improper cross-bridge formation in S. aureus could be causing resistance to P128. Using glutathione S-transferase (GST) fusion peptides as substrates it was found that both P128 and Lys16 were capable of cleaving a pentaglycine sequence, suggesting that P128 might be killing S. aureus by cleaving the pentaglycine cross-bridge of peptidoglycan. Moreover, peptides corresponding to the reported cross-bridge of Staphylococcus haemolyticus (GGSGG, AGSGG), which were not cleaved by lysostaphin, were cleaved efficiently by P128. This was also reflected in high sensitivity of S. haemolyticus to P128. This showed that in spite of sharing a common mechanism of action with lysostaphin, P128 has unique properties, which allow it to act on certain lysostaphin-resistant Staphylococcus strains.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2301 ◽  
Author(s):  
Federica De Castro ◽  
Michele Benedetti ◽  
Giovanna Antonaci ◽  
Laura Del Coco ◽  
Sandra De Pascali ◽  
...  

The novel [Pt(O,O′-acac)(γ-acac)(DMS)], Ptac2S, Pt(II) complex has recently gained increasing attention as a potential anticancer agent for its pharmacological activity shown in different tumor cell lines, studied both in vitro and in vivo. The mechanism of action of Ptac2S, operating on non-genomic targets, is known to be very different from that of cis-[PtCl2(NH3)2], cisplatin, targeting nucleic acids. In this work, we evaluated the cytotoxicity of Ptac2S on the cisplatin resistant Epithelial Ovarian Carcinoma (EOC), SKOV-3 cells, by the MTT assay. A 1H-NMR metabolomic approach coupled with multivariate statistical analysis was used for the first time for Ptac2S to figure out the biological mechanisms of action of the complex. The metabolic variations of intracellular metabolites and the composition of the corresponding extracellular culture media were compared to those of cisplatin (cells were treated at the IC50 doses of both drugs). The reported comparative metabolomic analysis revealed a very different metabolic profile between Ptac2S and cisplatin treated samples, thus confirming the different mechanism of action of Ptac2S also in the Epithelial Ovarian Carcinoma (EOC), SKOV-3 cells line. In particular, higher levels of pyruvate were observed in Ptac2S treated, with respect to cisplatin treated, cells (in both aqueous and culture media). In addition, a very different lipid expression resulted after the exposure to the two drugs (Ptac2S and cisplatin). These results suggest a possible explanation for the Ptac2S ability to circumvent cisplatin resistance in SKOV-3 cells.


1994 ◽  
Vol 1994 (39) ◽  
pp. 1-12 ◽  
Author(s):  
K. A. Voss ◽  
W. J. CHAMBERLAIN ◽  
R. T. RILEY ◽  
C. W. BACON ◽  
W. P. NORRED

2021 ◽  
Author(s):  
Zi-Jian Deng ◽  
Dong-Wen Chen ◽  
Xi-Jie Chen ◽  
Jia-Ming Fang ◽  
Liang Xv ◽  
...  

Abstract Background: Gastric cancer is the fourth most common malignant disease. Both CDK10 and long noncoding RNAs (lncRNAs) have been found to exert biological functions in multiple cancers. However, it is still unclear whether CDK10 represses tumor progression in gastric cancer by reducing potential targeting lncRNAs.Methods: The functions of CDK10 and lncRNA-C5ORF42-5 in proliferation, invasion and migration were assessed by MTS assays, colony formation assays, cell cycle and apoptosis assays, Transwell assays, wound healing assays and animal experiments. We used high-throughput sequencing to confirm the existence of lncRNA-C5ORF42-5 and quantitative real-time PCR was used to evaluate lncRNA expression. Then, with RNA-seq sequencing as well as GO function and KEGG enrichment analysis, we identified the signaling pathways in which lncRNA-C5ORF42-5 was involved in gastric cancer. Finally, western blotting was used to identify the genes regulated by lncRNA-C5ORF42-5.Results: Our results showed that CDK10 is expressed at relatively low levels in gastric cancer cell lines and inhibits the progression of gastric cancer cells both in vitro and in vivo. Next, based on high-throughput sequencing, we identified a novel lncRNA, lncRNA-C5ORF42-5, in the stable CDK10-overexpressing cell line compared with the CDK-knockdown cell line and their controls. Additionally, we confirmed that lncRNA-C5ORF42-5 acts as an oncogene to promote metastasis in gastric cancer in vitro and in vivo. We then ascertained that lncRNA-C5ORF42-5 is a major contributor to the function of CDK10 in gastric cancer metastasis by upregulating lncRNA-C5ORF42-5 to reverse the effects of CDK10 overexpression. Finally, we explored the mechanism by which lncRNA-C5ORF42-5 overexpression affects gastric cancer cells to elucidate whether lncRNA-C5ORF42-5 may increase the activity of the SMAD pathway of BMP signaling and promote the expression of EMT-related proteins, such as E-cadherin. Additionally, overexpression of lncRNA-C5ORF42-5 affected the phosphorylation levels of AKT and ERK.Conclusion: Our findings suggest that CDK10 overexpression represses gastric cancer tumor progression by reducing lncRNA-C5ORF42-5 and hindering activation of the related proteins in metastatic signaling pathways, which provides new insight into developing effective therapeutic strategies in the treatment of metastatic gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document