scholarly journals 1455. Potential Mechanisms of Cefiderocol MIC Increase in Enterobacterales in In Vitro Resistance Acquisition Studies

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S730-S730
Author(s):  
Yoshinori Yamano ◽  
Rio Nakamura ◽  
Miki Takemura ◽  
Roger Echols

Abstract Background Cefiderocol (CFDC) is a novel siderophore, iron-chelating cephalosporin, which is transported into bacteria via iron transporters. CFDC has potent in vitro and in vivo activity against all aerobic Gram-negative bacteria, including carbapenem-resistant strains. To date, clinical isolates with cefiderocol MIC >4 µg/mL have been found infrequently, in which the presence of a few β-lactamases or altered iron transport was found. We investigated potential new mechanisms causing CFDC MIC increases in non-clinical studies. Methods The mutation positions were determined by whole genome sequencing using four K. pneumoniae mutants including two KPC producers and one NDM producer that had shown CFDC MIC increases in previous in vitro resistance-acquisition studies. The mutant strains were obtained at the frequency of 10-7 to < 10-8 by spreading bacteria on standard Mueller‒Hinton agar medium containing CFDC at concentrations of 10× MIC, with or without apo-transferrin (20 μg/mL). CFDC MIC was determined by broth microdilution using iron-depleted cation-adjusted Mueller-Hinton broth based on Clinical and Laboratory Standards Institute guidelines. The emergence of MIC increase mutants was also assessed by in vitro chemostat models under humanized plasma pharmacokinetic exposures of CFDC. Results The possible resistance mechanisms were investigated. Mutation of baeS or envZ, sensors of two-component regulation systems, were found in three or two mutants among the tested four isolates, respectively, and caused the MIC to increase by 4–32-fold. The altered expression level of specific genes by the baeS or envZ mutation could affect CFDC susceptibility, but the specific genes have not been identified. In addition, the mutation of exbD, an accessory protein related to iron transport, was identified in one case and caused the MIC to increase by >8-fold. In vitro chemostat studies using two isolates (one NDM producer and one KPC producer) showed no resistance acquisition during 24-hour exposure. Table. Overview of mutation emergence in five isolates of K. pneumoniae Conclusion The mutation of two-component regulation systems (BaeSR and OmpR/EnvZ) and iron transport-related proteins were shown to be possible mechanisms causing CFDC MIC increases, but these mutants did not appear under human exposures. Disclosures Yoshinori Yamano, PhD, Shionogi & Co., Ltd. (Employee) Rio Nakamura, BSc, Shionogi & Co., Ltd. (Employee) Miki Takemura, MSc, Shionogi & Co., Ltd. (Employee) Roger Echols, MD, Shionogi Inc. (Consultant)

2017 ◽  
Vol 61 (10) ◽  
Author(s):  
Mordechai Grupper ◽  
Christina Sutherland ◽  
David P. Nicolau

ABSTRACT The recent escalation of occurrences of carbapenem-resistant Pseudomonas aeruginosa has been recognized globally and threatens to erode the widespread clinical utility of the carbapenem class of compounds for this prevalent health care-associated pathogen. Here, we compared the in vitro inhibitory activity of ceftazidime-avibactam and ceftolozane-tazobactam against 290 meropenem-nonsusceptible Pseudomonas aeruginosa nonduplicate clinical isolates from 34 U.S. hospitals using reference broth microdilution methods. Ceftazidime-avibactam and ceftolozane-tazobactam were active, with ceftolozane-tazobactam having significantly higher inhibitory activity than ceftazidime-avibactam. The heightened inhibitory activity of ceftolozane-tazobactam was sustained when the site of origin (respiratory, blood, or wound) and nonsusceptibility to other β-lactam antimicrobials was considered. An extensive genotypic search for enzymatically driven β-lactam resistance mechanisms revealed the exclusive presence of the VIM metallo-β-lactamase among only 4% of the subset of isolates nonsusceptible to ceftazidime-avibactam, ceftolozane-tazobactam, or both. These findings suggest an important role for both ceftazidime-avibactam and ceftolozane-tazobactam against carbapenem-nonsusceptible Pseudomonas aeruginosa. Further in vitro and in vivo studies are needed to better define the clinical utility of these novel therapies against the increasingly prevalent threat of multidrug-resistant Pseudomonas aeruginosa.


2019 ◽  
Author(s):  
Deniz Gazel ◽  
Müşerref Tatman Otkun ◽  
Alper Akçalı

Abstract Background Colistin is one of the last resort antibiotics used against carbapenem-resistant Acinetobacter baumannii (AB); however, colistin resistance has been reported recently. Methylene blue (MB) is used in microbiology for staining, and in medicine as an antidote drug. Here, we investigated antimicrobial effects of MB and Eosin Methylene blue (EMB) agar against colistin-resistant AB strains. Methods The AB ATCC 19606 strain and 31 AB clinical isolates were included in the study. In the first round, ATCC strain and a clinical isolate were transformed into colistin-resistant forms, using Li's method, with increasing colistin concentrations. At each step, new MICs were determined and subcultures were inoculated to EMB and sheep blood agar (SBA). The colistin MIC values of the subcultures were also determined using Mueller Hinton Agar (MHA) containing 14 µg/mL MB. In the second round, colistin resistant clones of all collected clinical isolates (n=31) were obtained and screened to investigate their susceptibility to EMB agar by inoculating on SBA and EMB agar. Results At the beginning, the MICs of two strains were 0.5 µg/mL. At the last stage, both MICs had risen to 64 µg/mL. Subpopulations with high colistin resistance (>=32 µg/mL) were inhibited by MB and EMB agar, but could grow well on SBA. In MHA plates containing MB, the MICs decreased to the 0.5 µg/mL level for colistin-susceptible or moderately resistant clones. Additionally, clones with high colistin resistance showed atypical colony morphology on SBA. In the second round, MICs of the colistin resistant clones of all clinical isolates rose to 8 µg/mL after colistin exposure and 35% of those clinical isolates were inhibited by EMB agar while they could grow on SBA. Conclusion Highly resistant strains were totally inhibited by the effect of MB and EMB agar, while the MICs of the susceptible and moderate resistant clones decreased. EMB agar and MB may have inhibitory effects against colistin-resistant AB strains and MB may have a potential to be used as an antimicrobial drug. Secondly, using only EMB agar for subculturing may cause missing of colistin-resistant strains and giving incorrect identification or antibiogram reports in clinical microbiology laboratories.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S251-S251 ◽  
Author(s):  
Akinobu Ito ◽  
Toru Nishikawa ◽  
Ryuta Ishii ◽  
Miho Kuroiwa ◽  
Yoshino Ishioka ◽  
...  

Abstract Background Cefiderocol (S-649266, CFDC) is a novel siderophore cephalosporin with activity against a wide variety of Gram-negative bacteria including carbapenem-resistant strains. We previously reported that CFDC is efficiently transported into Pseudomonas aeruginosa via iron transporter PiuA. In this study, we examined frequency of resistance of P. aeruginosa to CFDC, and investigated the resistance mechanisms of appeared colonies. Methods Frequency of resistance (FoR) was determined by plating an overnight culture of P. aeruginosa PAO1 on Mueller–Hinton Agar containing 4× or 10×MIC of CFDC or ceftazidime (CAZ). Appeared colonies were analyzed by whole-genome sequencing (WGS) to identify genomic mutations. The mRNA expression was determined by real-time RT-PCR, and pyoverdine production was determined by MALDI-TOF/MS and expression of outer membrane protein was analyzed by SDS–PAGE and proteomic analysis. Results The FoR to CFDC was 2.9 × 10–8 and <7.1 × 10–8, which were lower than those to CAZ (3.1 × 10–7 and 3.4 × 10–8) in the conditions of 4× and 10×MIC, respectively. MIC of CFDC against CFDC-derived mutant increased from 0.5 μg/mL (MIC against PAO1) to 2 μg/mL, and MICs of CAZ did not increase. In the case of CAZ-derived mutant, MICs of CAZ increased from 1 μg/mL (MIC against PAO1) to 16 μg/mL or higher, though MIC of CFDC did not increase, suggesting no cross-resistance between CFDC and CAZ. WGS identified mutations in upstream regions of pvdS (pvdS mutant), which regulates pyoverdine synthesis, or fecI (fecI mutant), which regulates the synthesis of iron transporter FecA contributing to the transport of iron citrate. The pvdS expression and pyoverdine production in the pvdS mutant were more than 4- and 6-fold higher than those in PAO1, respectively. The expression of fecA in the fecI mutant was more than ninefold higher than that in PAO1. Conclusion The MIC increase of CFDC against P. aeruginosa occurred due to the mutation of iron transporter-related genes. The resistance acquisition risks should be low as the frequency of resistance to CFDC was lower and the MIC increase of CFDC against the mutants was smaller than that of CAZ. In addition, no cross-resistance between CFDC and CAZ was observed. Disclosures A. Ito, Shionogi & Co., Ltd.: Employee, Salary. T. Nishikawa, Shionogi & Co., Ltd.: Employee, Salary. R. Ishii, Shionogi & Co., Ltd.: Employee, Salary. M. Kuroiwa, Shionogi & Co., Ltd.: Employee, Salary. Y. Ishioka, Shionogi & Co., Ltd.: Employee, Salary. N. Kurihara, Shionogi & Co., Ltd.: Employee, Salary. I. Sakikawa, Shionogi & Co., Ltd.: Employee, Salary. T. Ota, Shionogi & Co., Ltd.: Employee, Salary. M. Rokushima, Shionogi & Co., Ltd.: Employee, Salary. M. Tsuji, SHIONOGI & CO., LTD.: Employee, Salary. T. Sato, SHIONOGI & CO., LTD.: Employee, Salary. Y. Yamano, SHIONOGI & CO., LTD.: Employee, Salary.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S725-S725
Author(s):  
Mariana Castanheira ◽  
Timothy B Doyle ◽  
Cory Hubler ◽  
Rodrigo E Mendes ◽  
Helio S Sader

Abstract Background Most CRE isolates in US hospitals produce KPC enzymes, but some do not carry carbapenemases. We investigated the prevalence, resistance mechanisms and activity of ceftazidime-avibactam and comparator agents against CRE that did not carry carbapenemase genes from US hospitals. Additionally, meropenem-resistant isolates were tested for meropenem-vaborbactam. Methods A total of 28,904 Enterobacterales isolates were collected in 70 US hospitals during 2016-2018, and susceptibility tested by reference broth microdilution. Meropenem-vaborbactam was tested using lyophilized panels following the manufacturer’s instructions. CRE isolates were submitted to whole genome sequencing for the screening of b-lactamase genes, multilocus sequence typing, changes in outer membrane protein (OMP) genes and AmpC expression levels. Results A total of 304 (1.1%) CREs were observed in the study period and 45 (14.8%) isolates did not carry carbapenemases. These isolates were mainly Klebsiella aerogenes, Enterobacter cloacae and Klebsiella pneumoniae (11, 11 and 10 isolates, respectively), but also included 5 other species. Acquired b-lactamase genes were detected among 17 isolates and blaCTX-M-15 was the most common (13 isolates). All K. aerogenes and 10 E. cloacae did not carry acquired b-lactamase genes. Ceftazidime-avibactam (100% susceptible) inhibited all isolates at the current breakpoint, followed by tigecycline and amikacin (> 80% susceptible). Other comparators were not active against non-carbapenemase-producing CRE. Nine of 35 meropenem-resistant isolates displayed meropenem-vaborbactam MIC values of ≥ 8 mg/L (nonsusceptible). Further analysis showed that 23 isolates had disruption of OmpC/OmpK36, 4 had disrupted OmpF/OmpK35 and 13 had both OMP genes disrupted. Additionally, 7 isolates had elevated AmpC expression among 17 isolates tested. Among 7 E. coli, 4 were ST131 and only 2 of 10 K. pneumoniae were clonal complex 11. Conclusion Therapy options for treatment of infections caused by CRE were very limited until recent approval of new agents with activity against these isolates. Ceftazidime-avibactam demonstrated full in vitro activity against all carbapenemase-negative CRE carrying multiple resistance mechanisms. Disclosures Mariana Castanheira, PhD, 1928 Diagnostics (Research Grant or Support)A. Menarini Industrie Farmaceutiche Riunite S.R.L. (Research Grant or Support)Allergan (Research Grant or Support)Allergan (Research Grant or Support)Amplyx Pharmaceuticals (Research Grant or Support)Cidara Therapeutics (Research Grant or Support)Cidara Therapeutics (Research Grant or Support)Cipla Ltd. (Research Grant or Support)Cipla Ltd. (Research Grant or Support)Fox Chase Chemical Diversity Center (Research Grant or Support)GlaxoSmithKline (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Merck (Research Grant or Support)Merck (Research Grant or Support)Merck & Co, Inc. (Research Grant or Support)Merck & Co, Inc. (Research Grant or Support)Paratek Pharma, LLC (Research Grant or Support)Pfizer (Research Grant or Support)Qpex Biopharma (Research Grant or Support) Timothy B. Doyle, Allergan (Research Grant or Support)Allergan (Research Grant or Support)Cipla Ltd. (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Pfizer (Research Grant or Support)Qpex Biopharma (Research Grant or Support) Cory Hubler, Allergan (Research Grant or Support) Rodrigo E. Mendes, PhD, A. Menarini Industrie Farmaceutiche Riunite S.R.L. (Research Grant or Support)Allergan (Research Grant or Support)Allergan (Research Grant or Support)Basilea Pharmaceutica International, Ltd (Research Grant or Support)Cipla Ltd. (Research Grant or Support)Department of Health and Human Services (Research Grant or Support)GlaxoSmithKline (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Merck (Research Grant or Support)Merck (Research Grant or Support)Pfizer (Research Grant or Support) Helio S. Sader, MD, PhD, A. Menarini Industrie Farmaceutiche Riunite S.R.L. (Research Grant or Support)Allergan (Research Grant or Support)Allergan (Research Grant or Support)Allergan (Research Grant or Support)Cipla Ltd. (Research Grant or Support)Cipla Ltd. (Research Grant or Support)Melinta (Research Grant or Support)Merck (Research Grant or Support)Merck (Research Grant or Support)Paratek Pharma, LLC (Research Grant or Support)Pfizer (Research Grant or Support)


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


Cartilage ◽  
2021 ◽  
pp. 194760352110235
Author(s):  
Hongjun Zhang ◽  
Wendi Zheng ◽  
Du Li ◽  
Jia Zheng

Objective miR-146a-5p was found to be significantly upregulated in cartilage tissue of patients with osteoarthritis (OA). NUMB was shown to be involved in the autophagy regulation process of cells. We aimed to learn whether NUMB was involved in the apoptosis or autophagy process of chondrocytes in OA and related with miR-146a-5p. Methods QRT-PCR was used to detect miR-146a-5p level in 22 OA cartilage tissues and 22 controls. The targets of miR-146a-5p were analyzed using software and the luciferase reporter experiment. The apoptosis and autophagy, and related proteins were detected in chondrocytes treated with miR-146a-5p mimic/inhibitor or pcDNA3.1-NUMB/si-NUMB and IL-1β, respectively. In vivo experiment, intra-articular injection of miR-146a-5p antagomir/NC was administered at the knee of OA male mice before and after model construction. Chondrocyte apoptosis and the expression of apoptosis and autophagy-related proteins were also detected. Results miR-146a-5p was highly expressed in knee cartilage tissue of patients with OA, while NUMB was lowly expressed and negatively regulated by miR-146a-5p. Upregulation of miR-146a-5p can promote cell apoptosis and reduce autophagy of human and mouse chondrocytes by modulating the levels of cleaved caspase-3, cleaved PARP, Bax, Beclin 1, ATG5, p62, LC3-I, and LC3-II. Increasing the low level of NUMB reversed the effects of miR-146a-5p on chondrocyte apoptosis and autophagy. Intra-articular injection of miR-146a-5p antagomir can also reverse the effects of miR-146a-5p on the apoptosis and autophagy of knee joint chondrocytes in OA mice. Conclusion Downregulation of miR-146a-5p suppresses the apoptosis and promotes autophagy of chondrocytes by targeting NUMB in vivo and in vitro.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Priyanjali Bhattacharya ◽  
Trupti N. Patel

AbstractPlant derived products have steadily gained momentum in treatment of cancer over the past decades. Curcuma and its derivatives, in particular, have diverse medicinal properties including anticancer potential with proven safety as supported by numerous in vivo and in vitro studies. A defective Mis-Match Repair (MMR) is implicated in solid tumors but its role in haematologic malignancies is not keenly studied and the current literature suggests that it is limited. Nonetheless, there are multiple pathways interjecting the mismatch repair proteins in haematologic cancers that may have a direct or indirect implication in progression of the disease. Here, through computational analysis, we target proteins that are involved in rewiring of multiple signaling cascades via altered expression in cancer using various curcuma derivatives (Curcuma longa L. and Curcuma caesia Roxb.) which in turn, profoundly controls MMR protein function. These biomolecules were screened to identify their efficacy on selected targets (in blood-related cancers); aberrations of which adversely impacted mismatch repair machinery. The study revealed that of the 536 compounds screened, six of them may have the potential to regulate the expression of identified targets and thus revive the MMR function preventing genomic instability. These results reveal that there may be potential plant derived biomolecules that may have anticancer properties against the tumors driven by deregulated MMR-pathways.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii62-ii62
Author(s):  
Elisa Izquierdo ◽  
Diana Carvalho ◽  
Alan Mackay ◽  
Sara Temelso ◽  
Jessica K R Boult ◽  
...  

Abstract The survival of children with diffuse intrinsic pontine glioma (DIPG) remains dismal, with new treatments desperately needed. In the era of precision medicine, targeted therapies represent an exciting treatment opportunity, yet resistance can rapidly emerge, playing an important role in treatment failure. In a prospective biopsy-stratified clinical trial, we combined detailed molecular profiling (methylation BeadArray, exome, RNAseq, phospho-proteomics) linked to drug screening in newly-established patient-derived models of DIPG in vitro and in vivo. We identified a high degree of in vitro sensitivity to the MEK inhibitor trametinib (GI50 16-50nM) in samples, which harboured genetic alterations targeting the MAPK pathway, including the non-canonical BRAF_G469V mutation, and those affecting PIK3R1 and NF1. However, treatment of PDX models and of a patient with trametinib at relapse failed to elicit a significant response. We generated trametinib-resistant clones (62-188-fold, GI50 2.4–5.2µM) in the BRAF_G469V model through continuous drug exposure, and identified acquired mutations in MEK1/2 (MEK1_K57N, MEK1_I141S and MEK2_I115N) with sustained pathway up-regulation. These cells showed the hallmarks of mesenchymal transition, and expression signatures overlapping with inherently trametinib-insensitive primary patient-derived cells that predicted an observed sensitivity to dasatinib. Combinations of trametinib with dasatinib and the downstream ERK inhibitor ulixertinib showed highly synergistic effects in vitro. These data highlight the MAPK pathway as a therapeutic target in DIPG, and show the importance of parallel resistance modelling and rational combinatorial treatments likely to be required for meaningful clinical translation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dexin Shen ◽  
Yayun Fang ◽  
Fenfang Zhou ◽  
Zhao Deng ◽  
Kaiyu Qian ◽  
...  

Abstract Background CDCA3 is an important component of the E3 ligase complex with SKP1 and CUL1, which could regulate the progress of cell mitosis. CDCA3 has been widely identified as a proto-oncogene in multiple human cancers, however, its role in promoting human bladder urothelial carcinoma has not been fully elucidated. Methods Bioinformatic methods were used to analyze the expression level of CDCA3 in human bladder urothelial carcinoma tissues and the relationship between its expression level and key clinical characteristics. In vitro studies were performed to validate the specific functions of CDCA3 in regulating cell proliferation, cell migration and cell cycle process. Alterations of related proteins was investigated by western blot assays. In vivo studies were constructed to validate whether silencing CDCA3 could inhibit the proliferation rate in mice model. Results Bioinformatic analysis revealed that CDCA3 was significantly up-regulated in bladder urothelial carcinoma samples and was related to key clinical characteristics, such as tumor grade and metastasis. Moreover, patients who had higher expression level of CDCA3 tend to show a shorter life span. In vitro studies revealed that silencing CDCA3 could impair the migration ability of tumor cells via down-regulating EMT-related proteins such as MMP9 and Vimentin and inhibit tumor cell growth via arresting cells in the G1 cell cycle phase through regulating cell cycle related proteins like p21. In vivo study confirmed that silencing CDCA3 could inhibit the proliferation of bladder urothelial carcinoma cells. Conclusions CDCA3 is an important oncogene that could strengthen the migration ability of bladder urothelial carcinoma cells and accelerate tumor cell growth via regulating cell cycle progress and is a potential biomarker of bladder urothelial carcinoma.


Sign in / Sign up

Export Citation Format

Share Document