scholarly journals Risk of tipping the overturning circulation due to increasing rates of ice melt

2021 ◽  
Vol 118 (9) ◽  
pp. e2017989118
Author(s):  
Johannes Lohmann ◽  
Peter D. Ditlevsen

Central elements of the climate system are at risk for crossing critical thresholds (so-called tipping points) due to future greenhouse gas emissions, leading to an abrupt transition to a qualitatively different climate with potentially catastrophic consequences. Tipping points are often associated with bifurcations, where a previously stable system state loses stability when a system parameter is increased above a well-defined critical value. However, in some cases such transitions can occur even before a parameter threshold is crossed, given that the parameter change is fast enough. It is not known whether this is the case in high-dimensional, complex systems like a state-of-the-art climate model or the real climate system. Using a global ocean model subject to freshwater forcing, we show that a collapse of the Atlantic Meridional Overturning Circulation can indeed be induced even by small-amplitude changes in the forcing, if the rate of change is fast enough. Identifying the location of critical thresholds in climate subsystems by slowly changing system parameters has been a core focus in assessing risks of abrupt climate change. This study suggests that such thresholds might not be relevant in practice, if parameter changes are not slow. Furthermore, we show that due to the chaotic dynamics of complex systems there is no well-defined critical rate of parameter change, which severely limits the predictability of the qualitative long-term behavior. The results show that the safe operating space of elements of the Earth system with respect to future emissions might be smaller than previously thought.

2021 ◽  
Vol 12 (3) ◽  
pp. 819-835
Author(s):  
Johannes Lohmann ◽  
Daniele Castellana ◽  
Peter D. Ditlevsen ◽  
Henk A. Dijkstra

Abstract. We propose a conceptual model comprising a cascade of tipping points as a mechanism for past abrupt climate changes. In the model, changes in a control parameter, which could for instance be related to changes in the atmospheric circulation, induce sequential tipping of sea ice cover and the ocean's meridional overturning circulation. The ocean component, represented by the well-known Stommel box model, is shown to display so-called rate-induced tipping. Here, an abrupt resurgence of the overturning circulation is induced before a bifurcation point is reached due to the fast rate of change of the sea ice. Because of the multi-scale nature of the climate system, this type of tipping cascade may also be a risk concerning future global warming. The relatively short timescales involved make it challenging to detect these tipping points from observations. However, with our conceptual model we find that there can be a significant delay in the tipping because the system is attracted by the stable manifold of a saddle during the rate-induced transition before escaping towards the undesired state. This opens up the possibility for an early warning of the impending abrupt transition via detection of the changing linear stability in the vicinity of the saddle. To do so, we propose estimating the Jacobian from the noisy time series. This is shown to be a useful generic precursor to detect rate-induced tipping.


2013 ◽  
Vol 44 (2) ◽  
pp. 662-675 ◽  
Author(s):  
Paul Spence ◽  
Erik van Sebille ◽  
Oleg A. Saenko ◽  
Matthew H. England

Abstract This study uses a global ocean eddy-permitting climate model to explore the export of abyssal water from the Southern Ocean and its sensitivity to projected twenty-first-century poleward-intensifying Southern Ocean wind stress. The abyssal flow pathways and transport are investigated using a combination of Lagrangian and Eulerian techniques. In an Eulerian format, the equator- and poleward flows within similar abyssal density classes are increased by the wind stress changes, making it difficult to explicitly diagnose changes in the abyssal export in a meridional overturning circulation framework. Lagrangian particle analyses are used to identify the major export pathways of Southern Ocean abyssal waters and reveal an increase in the number of particles exported to the subtropics from source regions around Antarctica in response to the wind forcing. Both the Lagrangian particle and Eulerian analyses identify transients as playing a key role in the abyssal export of water from the Southern Ocean. Wind-driven modifications to the potential energy component of the vorticity balance in the abyss are also found to impact the Southern Ocean barotropic circulation.


2015 ◽  
Vol 45 (7) ◽  
pp. 1929-1946 ◽  
Author(s):  
Sandy Grégorio ◽  
Thierry Penduff ◽  
Guillaume Sérazin ◽  
Jean-Marc Molines ◽  
Bernard Barnier ◽  
...  

AbstractThe low-frequency variability of the Atlantic meridional overturning circulation (AMOC) is investigated from 2, ¼°, and ° global ocean–sea ice simulations, with a specific focus on its internally generated (i.e., “intrinsic”) component. A 327-yr climatological ¼° simulation, driven by a repeated seasonal cycle (i.e., a forcing devoid of interannual time scales), is shown to spontaneously generate a significant fraction R of the interannual-to-decadal AMOC variance obtained in a 50-yr “fully forced” hindcast (with reanalyzed atmospheric forcing including interannual time scales). This intrinsic variance fraction R slightly depends on whether AMOCs are computed in geopotential or density coordinates, and on the period considered in the climatological simulation, but the following features are quite robust when mesoscale eddies are simulated (at both ¼° and ° resolutions); R barely exceeds 5%–10% in the subpolar gyre but reaches 30%–50% at 34°S, up to 20%–40% near 25°N, and 40%–60% near the Gulf Stream. About 25% of the meridional heat transport interannual variability is attributed to intrinsic processes at 34°S and near the Gulf Stream. Fourier and wavelet spectra, built from the 327-yr ¼° climatological simulation, further indicate that spectral peaks of intrinsic AMOC variability (i) are found at specific frequencies ranging from interannual to multidecadal, (ii) often extend over the whole meridional scale of gyres, (iii) stochastically change throughout these 327 yr, and (iv) sometimes match the spectral peaks found in the fully forced hindcast in the North Atlantic. Intrinsic AMOC variability is also detected at multidecadal time scales, with a marked meridional coherence between 35°S and 25°N (15–30 yr periods) and throughout the whole basin (50–90-yr periods).


2018 ◽  
Vol 31 (12) ◽  
pp. 4727-4743 ◽  
Author(s):  
Wei Liu ◽  
Jian Lu ◽  
Shang-Ping Xie ◽  
Alexey Fedorov

Climate models show that most of the anthropogenic heat resulting from increased atmospheric CO2 enters the Southern Ocean near 60°S and is stored around 45°S. This heat is transported to the ocean interior by the meridional overturning circulation (MOC) with wind changes playing an important role in the process. To isolate and quantify the latter effect, we apply an overriding technique to a climate model and decompose the total ocean response to CO2 increase into two major components: one due to wind changes and the other due to direct CO2 effect. We find that the poleward-intensified zonal surface winds tend to shift and strengthen the ocean Deacon cell and hence the residual MOC, leading to anomalous divergence of ocean meridional heat transport around 60°S coupled to a surface heat flux increase. In contrast, at 45°S we see anomalous convergence of ocean heat transport and heat loss at the surface. As a result, the wind-induced ocean heat storage (OHS) peaks at 46°S at a rate of 0.07 ZJ yr−1 (° lat)−1 (1 ZJ = 1021 J), contributing 20% to the total OHS maximum. The direct CO2 effect, on the other hand, very slightly alters the residual MOC but primarily warms the ocean. It induces a small but nonnegligible change in eddy heat transport and causes OHS to peak at 42°S at a rate of 0.30 ZJ yr−1 (° lat)−1, accounting for 80% of the OHS maximum. We also find that the eddy-induced MOC weakens, primarily caused by a buoyancy flux change as a result of the direct CO2 effect, and does not compensate the intensified Deacon cell.


2021 ◽  
Author(s):  
Levke Caesar ◽  
Gerard McCarthy

<p>While there is increasing paleoclimatic evidence that the Atlantic Meridional Overturning Circulation (AMOC) has weakened over the last one to two hundred years (Caesar et al., 2018; Thornalley et al., 2018), this is not confirmed by climate model simulations. Instead, the new simulations from the 6th Coupled Model Intercomparison Project (CMIP6) show a slight strengthening of the multimodel mean AMOC from 1850 until about 1985 (Menary et al., 2020), attributed to anthropogenic aerosol forcing. Arguing for a recent weakening of the AMOC, some studies attribute the emergence of the North Atlantic warming hole as a sign of the reduced meridional heat transport associated with a weaker AMOC (e.g. Caesar et al., 2018), yet this cold anomaly has also been interpreted as being aerosol-forced (Booth et al., 2012) and therefore not necessarily a sign of a weakening AMOC but rather a possible driver of a strengthening of the AMOC.</p><p>Looking beyond temperature, a fresh anomaly has recently emerged in the subpolar North Atlantic (Holliday et al., 2020). While a strengthening AMOC has been linked with an increase in salinity in the subpolar gyre region (Menary et al., 2013), an AMOC weakening would, due to the salt-advection feedback, likely lead to a reduction in salinity in the North Atlantic region. To shed some light on the question of whether the cold anomaly is internally (AMOC) or externally (aerosol-forced) driven we consider the co-variability of salinity and temperature in the North Atlantic in respect of changes in surface fluxes or alternate drivers.</p><p> </p><p>References</p><p>Booth, B.B.B., Dunstone, N.J., Halloran, P.R., Andrews, T. and Bellouin, N., 2012. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484(7393): 228–232.</p><p>Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. and Saba, V., 2018. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556(7700): 191-196.</p><p>Holliday, N.P., Bersch, M., Berx, B., Chafik, L., Cunningham, S., Florindo-López, C., Hátún, H., Johns, W., Josey, S.A., Larsen, K.M.H., Mulet, S., Oltmanns, M., Reverdin, G., Rossby, T., Thierry, V., Valdimarsson, H. and Yashayaev, I., 2020. Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nature Communications, 11(1): 585.</p><p>Menary, M.B., Roberts, C.D., Palmer, M.D., Halloran, P.R., Jackson, L., Wood, R.A., Müller, W.A., Matei, D. and Lee, S.-K., 2013. Mechanisms of aerosol-forced AMOC variability in a state of the art climate model. Journal of Geophysical Research: Oceans, 118(4): 2087-2096.</p><p>Menary, M.B., Robson, J., Allan, R.P., Booth, B.B.B., Cassou, C., Gastineau, G., Gregory, J., Hodson, D., Jones, C., Mignot, J., Ringer, M., Sutton, R., Wilcox, L. and Zhang, R., 2020. Aerosol-Forced AMOC Changes in CMIP6 Historical Simulations. Geophysical Research Letters, 47(14): e2020GL088166.</p><p>Thornalley, D.J.R., Oppo, D.W., Ortega, P., Robson, J.I., Brierley, C.M., Davis, R., Hall, I.R., Moffa-Sanchez, P., Rose, N.L., Spooner, P.T., Yashayaev, I. and Keigwin, L.D., 2018. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature, 556(7700): 227-230.</p>


2021 ◽  
Author(s):  
Claus W. Böning ◽  
Arne Biastoch ◽  
Klaus Getzlaff ◽  
Patrick Wagner ◽  
Siren Rühs ◽  
...  

<p>A series of global ocean - sea ice model simulations is used to investigate the spatial structure and temporal variability of the sinking branch of the meridional overturning circulation (AMOC) in the subpolar North Atlantic. The experiments include hindcast simulations of the last six decades based on the high-resolution (1/20°) VIKING20X-model forced by the CORE and JRA55-do reanalysis products, supplemented by sensitivity studies with a 1/4°-configuration (ORCA025) aimed at elucidating the roles of variations in the wind stress and buoyancy fluxes. The experiments exhibit different multi-decadal trends in the AMOC, reflecting the well-known sensitivity of ocean-only models to subtle details in the configuration of the subarctic freshwater forcing. All experiments, however, concur in that the dense, southward branch of the overturning is mainly fed by “sinking” (in density space) in the Irminger and Iceland Basins, in accordance with the first results of the OSNAP observational program. Remarkably, the contribution of the Labrador Sea has remained small throughout the whole simulation period, even during the phase of extremely strong convection in the early 1990s: i.e., the rate of deep water exported from the subpolar North Atlantic by the DWBC off Newfoundland never differed by more than O(1 Sv) from the DWBC entering the Labrador Sea at Cape Farewell. The model solutions indicate a particular concentration of the sinking along the deep boundary currents south of the Denmark Straits and south of Iceland, pointing to a prime importance for the AMOC of the outflows from the Nordic Seas and their subsequent enhancement by the entrainment of intermediate waters. Since these include the water masses formed by deep convection in the Labrador and southern Irminger Seas, our study offers an alternative interpretation of the dynamical role of decadal changes in Labrador Sea convection intensity in terms of a remote effect on the deep transports established in the outflow regimes.</p>


2021 ◽  
Author(s):  
Robin Waldman ◽  
Christophe Cassou ◽  
Aurore Voldoire

<p>In global climate models, low-frequency natural variability related to the Atlantic Ocean overturning circulation is a common behaviour. Such intrinsic climate variability is a potential source of decadal climate predictability. However, over longer term scenario simulations, this natural variability becomes a major source of uncertainty. In this study, we document a large and sustained centennial variability in the 3500-year pre-industrial control run of the CNRM-CM6 coupled climate model which is driven by the North Atlantic ocean, and more specifically its meridional overturning circulation (AMOC). We propose a new AMOC dynamical decomposition highlighting the dominant role of mid-depth density anomalies at the western boundary as the driver of this centennial variability. We relate such density variability to deep convection and overflows in the western subpolar gyre, themselves controlled by and intense salinity variability of the upper layers. Finally, we show that such salinity variability is the result of periodic freshwater recharge and descharge events from the Arctic Ocean, themselves triggered by stochastic atmospheric forcing.</p>


2020 ◽  
Vol 6 (26) ◽  
pp. eaaz4876 ◽  
Author(s):  
Wei Liu ◽  
Alexey V. Fedorov ◽  
Shang-Ping Xie ◽  
Shineng Hu

While the Atlantic Meridional Overturning Circulation (AMOC) is projected to slow down under anthropogenic warming, the exact role of the AMOC in future climate change has not been fully quantified. Here, we present a method to stabilize the AMOC intensity in anthropogenic warming experiments by removing fresh water from the subpolar North Atlantic. This method enables us to isolate the AMOC climatic impacts in experiments with a full-physics climate model. Our results show that a weakened AMOC can explain ocean cooling south of Greenland that resembles the North Atlantic warming hole and a reduced Arctic sea ice loss in all seasons with a delay of about 6 years in the emergence of an ice-free Arctic in boreal summer. In the troposphere, a weakened AMOC causes an anomalous cooling band stretching from the lower levels in high latitudes to the upper levels in the tropics and displaces the Northern Hemisphere midlatitude jets poleward.


2014 ◽  
Vol 7 (1) ◽  
pp. 211-224 ◽  
Author(s):  
A. Schmittner ◽  
G. D. Egbert

Abstract. Two modifications to an existing scheme of tidal mixing are implemented in the coarse resolution ocean component of a global climate model. First, the vertical distribution of energy flux out of the barotropic tide is determined using high resolution bathymetry. This shifts the levels of mixing higher up in the water column and leads to a stronger mid-depth meridional overturning circulation in the model. Second, the local dissipation efficiency for diurnal tides is assumed to be larger than that for the semi-diurnal tides poleward of 30°. Both modifications are shown to improve agreement with observational estimates of diapycnal diffusivities based on microstructure measurements and circulation indices. We also assess impacts of different spatial distributions of the barotropic energy loss. Estimates based on satellite altimetry lead to larger diffusivities in the deep ocean and hence a stronger deep overturning circulation in our climate model that is in better agreement with observation based estimates compared to those based on a tidal model.


Sign in / Sign up

Export Citation Format

Share Document