scholarly journals Ultrasound-on-chip platform for medical imaging, analysis, and collective intelligence

2021 ◽  
Vol 118 (27) ◽  
pp. e2019339118
Author(s):  
Jonathan M. Rothberg ◽  
Tyler S. Ralston ◽  
Alex G. Rothberg ◽  
John Martin ◽  
Jaime S. Zahorian ◽  
...  

Over the past half-century, ultrasound imaging has become a key technology for assessing an ever-widening range of medical conditions at all stages of life. Despite ultrasound’s proven value, expensive systems that require domain expertise in image acquisition and interpretation have limited its broad adoption. The proliferation of portable and low-cost ultrasound imaging can improve global health and also enable broad clinical and academic studies with great impact on the fields of medicine. Here, we describe the design of a complete ultrasound-on-chip, the first to be cleared by the Food and Drug Administration for 13 indications, comprising a two-dimensional array of silicon-based microelectromechanical systems (MEMS) ultrasonic sensors directly integrated into complementary metal–oxide–semiconductor-based control and processing electronics to enable an inexpensive whole-body imaging probe. The fabrication and design of the transducer array with on-chip analog and digital circuits, having an operating power consumption of 3 W or less, are described, in which approximately 9,000 seven-level feedback-based pulsers are individually addressable to each MEMS element and more than 11,000 amplifiers, more than 1,100 analog-to-digital converters, and more than 1 trillion operations per second are implemented. We quantify the measured performance and the ability to image areas of the body that traditionally takes three separate probes. Additionally, two applications of this platform are described—augmented reality assistance that guides the user in the acquisition of diagnostic-quality images of the heart and algorithms that automate the measurement of cardiac ejection fraction, an indicator of heart health.

2009 ◽  
Vol 2009 ◽  
pp. 1-17 ◽  
Author(s):  
Dilip Swaminathan ◽  
Harvey Thornburg ◽  
Jessica Mumford ◽  
Stjepan Rajko ◽  
Jodi James ◽  
...  

Laban movement analysis (LMA) is a systematic framework for describing all forms of human movement and has been widely applied across animation, biomedicine, dance, and kinesiology. LMA (especially Effort/Shape) emphasizes how internal feelings and intentions govern the patterning of movement throughout the whole body. As we argue, a complex understanding of intention via LMA is necessary for human-computer interaction to becomeembodiedin ways that resemble interaction in the physical world. We thus introduce a novel, flexible Bayesian fusion approach for identifying LMA Shape qualities from raw motion capture data in real time. The method uses a dynamic Bayesian network (DBN) to fuse movement features across the body and across time and as we discuss can be readily adapted for low-cost video. It has delivered excellent performance in preliminary studies comprising improvisatory movements. Our approach has been incorporated inResponse, a mixed-reality environment where users interact via natural, full-body human movement and enhance their bodily-kinesthetic awareness through immersive sound and light feedback, with applications to kinesiology training, Parkinson's patient rehabilitation, interactive dance, and many other areas.


2019 ◽  
Vol 18 (1) ◽  
pp. 33-40
Author(s):  
Aline S. Reis ◽  
Laisa L. Paineiras-Domingos ◽  
Eloá Moreira-Marconi ◽  
Márcia C. Moura-Fernandes ◽  
Hervé Quinart ◽  
...  

Introduction: Metabolic syndrome (MetS) is characterized bya group of cardiovascular risk factors, such as hypertension,hyperglycemia, hypercholesterolemia, low high-density cholesteroland increased abdominal fat. Over the years, changesin body composition occur, with accelerated loss of lean massand increased fat mass, favoring cardiometabolic disorders.A strong relationship exists between physical inactivity andthe presence of multiple risk factors for MetS. Thus, physicalexercise has been recommended for the prevention of cardiovascular,chronic and MetS diseases. Whole-body vibration(WBV) exercise can be considered to be an exercise modalitythat benefits the muscular strength and cardiovascular healthof elderly, sick and healthy people. Individuals with MetSare unmotivated to perform physical exercise regularly and,therefore, new approaches to intervention for this populationare desirable. Objectives: The aim of this study is to presenta protocol to verify the effect of WBV exercise on the bodycomposition of MetS individuals. Methods: Randomized controlledtrial with MetS individuals that will be allocated to anintervention group (WBVG) and a control group (CG). Participantswill be placed barefoot on the base of a side alternatingvibrating platform, with 130º knee flexion. Individuals (WBVGand CG) will perform the protocol for 12 weeks, twice a week.The CG subjects will perform the exercises at 5Hz throughoutthe intervention and those from the WBVG will perform the5Hz exercises in the first session, adding 1Hz per session, endingthe protocol at 16Hz. The body composition will be evaluatedbefore and after the protocol using bioelectrical impedanceanalysis. Discussion: Studies involving WBV exercise haveshown improvement in composition in individuals withdifferent conditions (healthy and unhealthy). Conclusion: Theproposed protocol will permit the acquisition of findings thatwill be relevant in the evaluation of the effect of the WBV onthe body composition of MetS individuals due to its ease ofrealization, low cost and safety.Keywords: Whole body vibration exercise; Metabolic syndrome;Physical activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Popa ◽  
Richard Hopper ◽  
Syed Zeeshan Ali ◽  
Matthew Thomas Cole ◽  
Ye Fan ◽  
...  

AbstractThe gas sensor market is growing fast, driven by many socioeconomic and industrial factors. Mid-infrared (MIR) gas sensors offer excellent performance for an increasing number of sensing applications in healthcare, smart homes, and the automotive sector. Having access to low-cost, miniaturized, energy efficient light sources is of critical importance for the monolithic integration of MIR sensors. Here, we present an on-chip broadband thermal MIR source fabricated by combining a complementary metal oxide semiconductor (CMOS) micro-hotplate with a dielectric-encapsulated carbon nanotube (CNT) blackbody layer. The micro-hotplate was used during fabrication as a micro-reactor to facilitate high temperature (>700 $$^{\circ }$$ ∘ C) growth of the CNT layer and also for post-growth thermal annealing. We demonstrate, for the first time, stable extended operation in air of devices with a dielectric-encapsulated CNT layer at heater temperatures above 600 $$^{\circ }$$ ∘ C. The demonstrated devices exhibit almost unitary emissivity across the entire MIR spectrum, offering an ideal solution for low-cost, highly-integrated MIR spectroscopy for the Internet of Things.


2021 ◽  
Author(s):  
Daniel Popa ◽  
Richard Hopper ◽  
Syed Zeeshan Ali ◽  
Matthew Cole ◽  
Ye Fan ◽  
...  

Abstract The gas sensor market is growing fast, driven by many socioeconomic and industrial factors. Mid-infrared (MIR) gas sensors offer excellent performance for an increasing number of sensing applications in healthcare, smart homes, and the automotive sector. Having access to low-cost, miniaturized, energy efficient light sources is of critical importance for the monolithic integration of MIR sensors. Here, we present an on-chip broadband thermal MIR source fabricated by combining a complementary metal oxide semiconductor (CMOS) micro-hotplate with a dielectric-encapsulated carbon nanotube (CNT) blackbody layer. The micro-hotplate was used during fabrication as a micro-reactor to facilitate high temperature (>700 • C) growth of the CNT layer and also for post-growth thermal annealing. We demonstrate, for the first time, stable extended operation in air of devices with a dielectric-encapsulated CNT layer at heater temperatures above 600 • C. The demonstrated devices exhibit almost unitary emissivity across the entire MIR spectrum, offering an ideal solution for low-cost, highly-integrated MIR spectroscopy for the Internet of Sensors.


Photonics ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 13
Author(s):  
Eun-Yeong Park ◽  
Sinyoung Park ◽  
Haeni Lee ◽  
Munsik Kang ◽  
Chulhong Kim ◽  
...  

Photoacoustic imaging is a promising medical imaging technique that provides excellent function imaging of an underlying biological tissue or organ. However, it is limited in providing structural information compared to other imaging modalities, such as ultrasound imaging. Thus, to offer complete morphological details of biological tissues, photoacoustic imaging is typically integrated with ultrasound imaging. This dual-modal imaging technique is already implemented on commercial clinical ultrasound imaging platforms. However, commercial platforms suffer from limited elevation resolution compared to the lateral and axial resolution. We have successfully developed a dual-modal photoacoustic and ultrasound imaging to address these limitations, specifically targeting animal studies. The system can acquire whole-body images of mice in vivo and provide complementary structural and functional information of biological tissue information simultaneously. The color-coded depth information can be readily obtained in photoacoustic images using complementary information from ultrasound images. The system can be used for several biomedical applications, including drug delivery, biodistribution assessment, and agent testing.


Science ◽  
2021 ◽  
Vol 373 (6550) ◽  
pp. 99-103
Author(s):  
Chao Xiang ◽  
Junqiu Liu ◽  
Joel Guo ◽  
Lin Chang ◽  
Rui Ning Wang ◽  
...  

Silicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (Si3N4) microresonators on a monolithic silicon substrate. Thousands of devices can be produced from a single wafer by using complementary metal-oxide-semiconductor–compatible techniques. With on-chip electrical control of the laser-microresonator relative optical phase, these devices can output single-soliton microcombs with a 100-gigahertz repetition rate. Furthermore, we observe laser frequency noise reduction due to self-injection locking of the InP/Si laser to the Si3N4 microresonator. Our approach provides a route for large-volume, low-cost manufacturing of narrow-linewidth, chip-based frequency combs for next-generation high-capacity transceivers, data centers, space and mobile platforms.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ling Wang ◽  
Kun Tang ◽  
Qi Zhang ◽  
Huanbin Li ◽  
Zhengwei Wen ◽  
...  

Neuroendocrine tumors (NETs) are tumors originated from neuroendocrine cells in the body. The localization and the detection of the extent of NETs are important for diagnosis and treatment, which should be individualized according to the tumor type, burden, and symptoms. Molecular imaging of NETs with high sensitivity and specificity is achieved by nuclear medicine method using single photon-emitting and positron-emitting radiopharmaceuticals. Somatostatin receptor imaging (SRI) using SPECT or PET as a whole-body imaging technique has become a crucial part of the management of NETs. The radiotherapy with somatostatin analogues labeled with therapeutic beta emitters, such as lutetium-177 or yttrium-90, has been proved to be an option of therapy for patients with unresectable and metastasized NETs. Molecular imaging can deliver an important message to improve the outcome for patients with NETs by earlier diagnosis, better choice of the therapeutic method, and evaluation of the therapeutic response.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5106-5106
Author(s):  
Johnny McHugh ◽  
Ciaran Johnston ◽  
Deirdre Duke ◽  
Patrick Thornton ◽  
Steve Eustace ◽  
...  

Abstract BACKGROUND: Bone involvement in myeloma is conventionally assessed by radiographic skeletal survey (plain x-rays of spine, skull, chest, pelvis and long bones). However this may not pick up bony involvement in all patients who may then present with serious complications of myeloma bone disease such as spinal cord compression. Whole body MRI may be better than skeletal survey at evaluating myeloma bone involvement. AIMS: To compare the evaluation of myeloma bone involvement by conventional radiographic skeletal survey (RSS) with whole body magnetic resonance imaging (MRI). METHODS: 35 patients with multiple myeloma (median age 68 yrs, range 46–81) underwent conventional RSS and whole body MRI. 19 of the patients had newly diagnosed multiple myeloma and 16 had relapsed multiple myeloma. The extent of myeloma bone involvement was evaluated in both RSS and MRI as follows: the body was divided up into ten areas: skull, cervical spine, ribs, thoracic spine, lumbar spine, pelvis, right arm, left arm, right leg, left leg. In each area the extent of myeloma bone involvement was scored in both RSS and MRI as follows: 0 = normal; 1 = one focus of abnormality; 2 = more than one focus of abnormality; 3 = diffuse disease. The scores for each of the ten areas were combined to give an overall score out of thirty for both RSS and MRI. RESULTS: 30 of the 35 patients (85.7%) had evidence of bone involvement on MRI. This compares with 22 out of the 35 (62.9%) on RSS. The mean score for the extent of myeloma bone involvement on MRI was significantly higher than that for RSS (MRI mean score: 15.5 out of 30 (median 17, range 0–30); RSS mean score: 5.5 out of 30 (median 3, range 0 to 24); p<0.001). MRI was superior to RSS in all ten areas evaluated both in terms of lesion detection and extent of disease. The greatest difference between MRI and RSS was seen in the cervical, thoracic and lumbar spine, while the smallest difference was seen in the ribs and skull. Eight of the patients had no bone involvement detectable on RSS but did have bone involvement on MRI and this resulted in upstaging on Durie-Salmon staging in four patients. SUMMARY/CONCLUSIONS: RSS has limited sensitivity and a significant ionising patient dose. It is a cumbersome procedure taking up to 30 minutes. Whole body MRI gives improved sensitivity and appreciation of anatomic location of disease. It is non-ionising and can be rapidly acquired at low cost. We conclude that whole body MRI is superior to conventional RSS in both the identification and evaluation of extent of bone involvement in multiple myeloma.


2015 ◽  
Vol 48 (2) ◽  
pp. 111-120 ◽  
Author(s):  
Sara Reis Teixeira ◽  
Jorge Elias Junior ◽  
Marcello Henrique Nogueira-Barbosa ◽  
Marcos Duarte Guimarães ◽  
Edson Marchiori ◽  
...  

Whole-body imaging in children was classically performed with radiography, positron-emission tomography, either combined or not with computed tomography, the latter with the disadvantage of exposure to ionizing radiation. Whole-body magnetic resonance imaging (MRI), in association with the recently developed metabolic and functional techniques such as diffusion-weighted imaging, has brought the advantage of a comprehensive evaluation of pediatric patients without the risks inherent to ionizing radiation usually present in other conventional imaging methods. It is a rapid and sensitive method, particularly in pediatrics, for detecting and monitoring multifocal lesions in the body as a whole. In pediatrics, it is utilized for both oncologic and non-oncologic indications such as screening and diagnosis of tumors in patients with genetic syndromes, evaluation of disease extent and staging, evaluation of therapeutic response and post-therapy follow-up, evaluation of non neoplastic diseases such as multifocal osteomyelitis, vascular malformations and syndromes affecting multiple regions of the body. The present review was aimed at describing the major indications of whole-body MRI in pediatrics added of technical considerations.


Sign in / Sign up

Export Citation Format

Share Document