scholarly journals The symbolic role of the underground world among Middle Paleolithic Neanderthals

2021 ◽  
Vol 118 (33) ◽  
pp. e2021495118
Author(s):  
Africa Pitarch Martí ◽  
João Zilhão ◽  
Francesco d’Errico ◽  
Pedro Cantalejo-Duarte ◽  
Salvador Domínguez-Bella ◽  
...  

Cueva de Ardales in Málaga, Spain, is one of the richest and best-preserved Paleolithic painted caves of southwestern Europe, containing over a thousand graphic representations. Here, we study the red pigment in panel II.A.3 of “Sala de las Estrellas,” dated by U-Th to the Middle Paleolithic, to determine its composition, verify its anthropogenic nature, infer the associated behaviors, and discuss their implications. Using optical microscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, micro-Raman spectroscopy, and X-ray diffraction, we analyzed a set of samples from the panel and compared them to natural coloring materials collected from the floor and walls of the cave. The conspicuously different texture and composition of the geological samples indicates that the pigments used in the paintings do not come from the outcrops of colorant material known in the cave. We confirm that the paintings are not the result of natural processes and show that the composition of the paint is consistent with the artistic activity being recurrent. Our results strengthen the hypothesis that Neanderthals symbolically used these paintings and the large stalagmitic dome harboring them over an extended time span.

2007 ◽  
Vol 560 ◽  
pp. 133-138
Author(s):  
J. Martin Herrera-Ramírez ◽  
Anthony Bunsell ◽  
Philippe Colomban

The behavior of two different types of ultra-high-performance polyamide (PA) 66 fibers under fatigue loading up to failure, and the correlation between the fibers (nano)structures and their structural heterogeneity with fatigue lifetimes, have been studied using scanning electron microscopy, differential scanning calorimetry, wide angle x-ray diffraction and micro-Raman spectroscopy. The role of the microstructure of the fibers in determining fatigue life is presented and the possibility of improving their resistance to fatigue or eliminating the fatigue process will be discussed.


1993 ◽  
Vol 58 (7) ◽  
pp. 1591-1599 ◽  
Author(s):  
Abd El-Aziz A. Said

Molybdenum oxide catalyst doped or mixed with (1 - 50) mole % Fe3+ ions were prepared. The structure of the original samples and the samples calcined at 400 °C were characterized using DTA, X-ray diffraction and IR spectra. Measurements of the electrical conductivity of calcined samples with and without isopropyl alcohol revealed that the conductance increases on increasing the content of Fe3+ ions up to 50 mole %. The activation energies of charge carriers were determined in presence and absence of the alcohol. The catalytic dehydration of isopropyl alcohol was carried out at 250 °C using a flow system. The results obtained showed that the doped or mixed catalysts are active and selective towards propene formation. However, the catalyst containing 40 mole % Fe3+ ions exhibited the highest activity and selectivity. Correlations were attempted to the catalyst composition with their electronic and catalytic properties. Probable mechanism for the dehydration process is proposed in terms of surface active sites.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Yogesh Kumar ◽  
Rabia Sultana ◽  
Prince Sharma ◽  
V. P. S. Awana

AbstractWe report the magneto-conductivity analysis of Bi2Se3 single crystal at different temperatures in a magnetic field range of ± 14 T. The single crystals are grown by the self-flux method and characterized through X-ray diffraction, Scanning Electron Microscopy, and Raman Spectroscopy. The single crystals show magnetoresistance (MR%) of around 380% at a magnetic field of 14 T and a temperature of 5 K. The Hikami–Larkin–Nagaoka (HLN) equation has been used to fit the magneto-conductivity (MC) data. However, the HLN fitted curve deviates at higher magnetic fields above 1 T, suggesting that the role of surface-driven conductivity suppresses with an increasing magnetic field. This article proposes a speculative model comprising of surface-driven HLN and added quantum diffusive and bulk carriers-driven classical terms. The model successfully explains the MC of the Bi2Se3 single crystal at various temperatures (5–200 K) and applied magnetic fields (up to 14 T).


1999 ◽  
Vol 55 (11) ◽  
pp. 1914-1916 ◽  
Author(s):  
F. A. V. Seixas ◽  
W. F. de Azevedo ◽  
M. F. Colombo

In this work, initial crystallographic studies of human haemoglobin (Hb) crystallized in isoionic and oxygen-free PEG solution are presented. Under these conditions, functional measurements of the O2-linked binding of water molecules and release of protons have evidenced that Hb assumes an unforeseen new allosteric conformation. The determination of the high-resolution structure of the crystal of human deoxy-Hb fully stripped of anions may provide a structural explanation for the role of anions in the allosteric properties of Hb and, particularly, for the influence of chloride on the Bohr effect, the mechanism by which Hb oxygen affinity is regulated by pH. X-ray diffraction data were collected to 1.87 Å resolution using a synchrotron-radiation source. Crystals belong to the space group P21212 and preliminary analysis revealed the presence of one tetramer in the asymmetric unit. The structure is currently being refined using maximum-likelihood protocols.


2007 ◽  
Vol 75 (3) ◽  
Author(s):  
Aparna Pareek ◽  
Xavier Torrelles ◽  
Jordi Rius ◽  
Uta Magdans ◽  
Hermann Gies

1999 ◽  
Vol 79 (1) ◽  
pp. 103-109 ◽  
Author(s):  
F. Courchesne ◽  
J.-F. Laberge ◽  
A. Dufresne

The role of soil organic matter (OM) on SO4 retention was investigated by comparing OM content, SO4 retention, and the distribution of Fe, Al and Si compounds in OM-poor (Grands-Jardins, PGJ) and OM-rich (Hermine, HER) Podzols from Québec, Canada. At both sites, four pedons were sampled by horizon; soil pH in H2O, organic C, phosphate-extractable SO4 and, sodium pyrophosphate, acid ammonium oxalate and dithionite-citrate-bicarbonate (DCB) extractable Fe, Al and Si were measured for each mineral horizon. The mineralogy of the clay (<2 µm) and fine silt (2–20 µm) fractions of selected horizons was determined by X-ray diffraction (XRD) and infrared spectroscopy (IR). Weighted mean organic C and pyrophosphate extractable Fe and Al contents were significantly higher in the HER than in the PGJ sola, while the PGJ soils were richer in amorphous inorganic Al. No trends were observed for inorganic Fe compounds. Chemical dissolution and IR allowed the identification of short-range ordered aluminosilicates, probably allophane, in the OM-poor and slightly acidic to neutral PGJ soils. These materials were absent from the OM-rich and acidic HER soils. Phosphate extractions showed that the weighted mean native SO4 content was five times higher in the PGJ than in the HER soil. Finally, native SO4 was strongly related to inorganic Fe, Al and Si (associated with allophane) at PGJ but only to inorganic Fe at HER. These results indicate that OM indirectly affects SO4 sorption through the influence organic substances exerts on the nature and distribution of pedogenic Fe, Al and Si compounds, such as allophane, in Podzolic profiles. Key words: Organic matter, sulfate, imogolite, allophane, silica, Podzol


1986 ◽  
Vol 250 (2) ◽  
pp. F302-F307 ◽  
Author(s):  
J. M. Burnell ◽  
C. Liu ◽  
A. G. Miller ◽  
E. Teubner

To study the effects of bicarbonate and magnesium on bone, mild acidosis and/or hypermagnesemia were produced in growing rats by feeding ammonium chloride and/or magnesium sulfate. Bone composition, quantitative histomorphometry, and mineral x-ray diffraction (XRD) characteristics were measured after 6 wk of treatment. The results demonstrated that both acidosis (decreased HCO3) and hypermagnesemia inhibited periosteal bone formation, and, when combined, results were summative; and the previously observed in vitro role of HCO3- and Mg2+ as inhibitors of crystal growth were confirmed in vivo. XRD measurements demonstrated that decreased plasma HCO3 resulted in larger crystals and increased Mg resulted in smaller crystals. However, the combined XRD effects of acidosis and hypermagnesemia resembled acidosis alone. It is postulated that the final composition and crystal structure of bone are strongly influenced by HCO3- and Mg2+, and the effects are mediated by the combined influence on both osteoblastic bone formation and the growth of hydroxyapatite.


2007 ◽  
Vol 22 (7) ◽  
pp. 1879-1887 ◽  
Author(s):  
Y.K. Jee ◽  
Y.H. Ko ◽  
Jin Yu

Varying amounts of Zn (1, 3, and 7 wt%) were added to Sn–3.5Ag solder on a Cu pad, and the resultant solder joint microstructures after a reflow and isothermal aging (150 °C, up to 500 h) were investigated using scanning electron microscopy, energy dispersive x-ray, and x-ray diffraction, which were subsequently correlated to the results of microhardness and drop tests. Zinc was effective in improving the drop resistance of Sn–3.5Ag solder on the Cu pad, and an addition of 3 wt% Zn nearly doubled the number of drops-to-failure (Nf). The beneficial role of Zn was ascribed to suppression of Cu6Sn5 and precipitation of Zn-containing intermetallic compounds (IMCs). However, the Zn effect was reduced as Cu6Sn5 and Ag3Sn precipitated in a joint IMC layer after prolonged aging. The interface between Ag5Zn8 and Cu5Zn8 was resistant to drop impact, but two other layered IMC structures of Cu6Sn5/Cu3Sn and Cu5Zn8/Cu6Sn5 were not.


2004 ◽  
Vol 19 (9) ◽  
pp. 2699-2702 ◽  
Author(s):  
C.S. Zhang ◽  
H.B Xiao ◽  
Y.J. Wang ◽  
Z.J. Chen ◽  
X.L. Cheng ◽  
...  

Erbium and silicon were dual implanted into thermally grown SiO2 film on Si (110) substrates, followed by thermal treatment at 700–1200 °C for 30 min. The microstructure was studied by transmission electron microscope and x-ray diffraction. When the implanted films were annealed at T > 900 °C, the silicon nanocrystals (nc-Si) enwrapped by amorphous silicon (a-Si) could be observed. The thermal quenching behavior at λ = 1.535 μm and its relation with the annealling temperature were also investigated. With increasing annealing temperature, the portion of a-Si and the thermal quenching both decreased. Efficient luminescence from Er ions and weak intensity thermal quenching were obtained from the sample annealed at 1100 °C. The role of a-Si in non-radiative processes at T > 100 K is discussed.


Sign in / Sign up

Export Citation Format

Share Document