scholarly journals Integrated mutational landscape analysis of uterine leiomyosarcomas

2021 ◽  
Vol 118 (15) ◽  
pp. e2025182118
Author(s):  
Jungmin Choi ◽  
Aranzazu Manzano ◽  
Weilai Dong ◽  
Stefania Bellone ◽  
Elena Bonazzoli ◽  
...  

Uterine leiomyosarcomas (uLMS) are aggressive tumors arising from the smooth muscle layer of the uterus. We analyzed 83 uLMS sample genetics, including 56 from Yale and 27 from The Cancer Genome Atlas (TCGA). Among them, a total of 55 Yale samples including two patient-derived xenografts (PDXs) and 27 TCGA samples have whole-exome sequencing (WES) data; 10 Yale and 27 TCGA samples have RNA-sequencing (RNA-Seq) data; and 11 Yale and 10 TCGA samples have whole-genome sequencing (WGS) data. We found recurrent somatic mutations in TP53, MED12, and PTEN genes. Top somatic mutated genes included TP53, ATRX, PTEN, and MEN1 genes. Somatic copy number variation (CNV) analysis identified 8 copy-number gains, including 5p15.33 (TERT), 8q24.21 (C-MYC), and 17p11.2 (MYOCD, MAP2K4) amplifications and 29 copy-number losses. Fusions involving tumor suppressors or oncogenes were deetected, with most fusions disrupting RB1, TP53, and ATRX/DAXX, and one fusion (ACTG2-ALK) being potentially targetable. WGS results demonstrated that 76% (16 of 21) of the samples harbored chromoplexy and/or chromothripsis. Clinically actionable mutational signatures of homologous-recombination DNA-repair deficiency (HRD) and microsatellite instability (MSI) were identified in 25% (12 of 48) and 2% (1 of 48) of fresh frozen uLMS, respectively. Finally, we found olaparib (PARPi; P = 0.002), GS-626510 (C-MYC/BETi; P < 0.000001 and P = 0.0005), and copanlisib (PIK3CAi; P = 0.0001) monotherapy to significantly inhibit uLMS-PDXs harboring derangements in C-MYC and PTEN/PIK3CA/AKT genes (LEY11) and/or HRD signatures (LEY16) compared to vehicle-treated mice. These findings define the genetic landscape of uLMS and suggest that a subset of uLMS may benefit from existing PARP-, PIK3CA-, and C-MYC/BET-targeted drugs.

2021 ◽  
Vol 11 ◽  
Author(s):  
Meng Zhang ◽  
Si-Cong Ma ◽  
Jia-Le Tan ◽  
Jian Wang ◽  
Xue Bai ◽  
...  

BackgroundHomologous recombination deficiency (HRD) is characterized by overall genomic instability and has emerged as an indispensable therapeutic target across various tumor types, particularly in ovarian cancer (OV). Unfortunately, current detection assays are far from perfect for identifying every HRD patient. The purpose of this study was to infer HRD from the landscape of copy number variation (CNV).MethodsGenome-wide CNV landscape was measured in OV patients from the Australian Ovarian Cancer Study (AOCS) clinical cohort and &gt;10,000 patients across 33 tumor types from The Cancer Genome Atlas (TCGA). HRD-predictive CNVs at subchromosomal resolution were identified through exploratory analysis depicting the CNV landscape of HRD versus non-HRD OV patients and independently validated using TCGA and AOCS cohorts. Gene-level CNVs were further analyzed to explore their potential predictive significance for HRD across tumor types at genetic resolution.ResultsAt subchromosomal resolution, 8q24.2 amplification and 5q13.2 deletion were predominantly witnessed in HRD patients (both p &lt; 0.0001), whereas 19q12 amplification occurred mainly in non-HRD patients (p &lt; 0.0001), compared with their corresponding counterparts within TCGA-OV. The predictive significance of 8q24.2 amplification (p &lt; 0.0001), 5q13.2 deletion (p = 0.0056), and 19q12 amplification (p = 0.0034) was externally validated within AOCS. Remarkably, pan-cancer analysis confirmed a cross-tumor predictive role of 8q24.2 amplification for HRD (p &lt; 0.0001). Further analysis of CNV in 8q24.2 at genetic resolution revealed that amplifications of the oncogenes, MYC (p = 0.0001) and NDRG1 (p = 0.0004), located on this fragment were also associated with HRD in a pan-cancer manner.ConclusionsThe CNV landscape serves as a generalized predictor of HRD in cancer patients not limited to OV. The detection of CNV at subchromosomal or genetic resolution could aid in the personalized treatment of HRD patients.


2021 ◽  
Author(s):  
Shin Ishihara ◽  
Takeshi Iwasaki ◽  
Kenichi Kohashi ◽  
Yuichi Yamada ◽  
Yu Toda ◽  
...  

Abstract Background Undifferentiated pleomorphic sarcoma (UPS) is a sarcoma with a poor prognosis. A clinical trial, SARC028, revealed that treatment with anti-PD-1 drugs was effective against UPS. Studies have reported that UPS expresses PD-L1, sometime strongly (≥ 50%). However, the mechanism of PD-L1 expression in UPS has remained still unclear. CKLF-like MARVEL transmembrane domain containing 6 (CMTM6) was identified as a novel regulator of PD-L1 expression. The positive relationship between PD-L1 and CMTM6 has been reported in several studies. The aim of this study was to examine CMTM6 expression in UPS and evaluate the relationship between PD-L1 and CMTM6. Materials and methods Fifty-one primary UPS samples were subjected to CMTM6 and PD-L1 immunostaining. CMTM6 expression was assessed using proportion and intensity scores. CMTM6 gene copy number was also evaluated using a real-time PCR-based copy number assay. We also analyzed the mRNA expression and copy number variation of PD-L1 and CMTM6 in The Cancer Genome Atlas (TCGA) data. Results TCGA data indicated that the mRNAs encoded by genes located around 3p22 were coexpressed with CMTM6 mRNA in UPS. Both proportion and intensity scores of CMTM6 positively correlated with strong PD-L1 expression (≥ 50%) (both p = 0.023). CMTM6 copy number gain increased CMTM6 expression. Patients with UPS with a high CMTM6 intensity score had worse prognosis for overall survival. Conclusions CMTM6 expression was significantly correlated with PD-L1 expression. CMTM6 expression induced strong PD-L1 expression (≥ 50%). CMTM6 copy number gain promoted CMTM6 expression and increased PD-L1 expression in UPS.


2019 ◽  
Vol 15 (35) ◽  
pp. 4031-4043 ◽  
Author(s):  
Zhipeng Jiang ◽  
Huashe Wang ◽  
Liang Li ◽  
Zehui Hou ◽  
Wei Liu ◽  
...  

Aim: Few studies focused on functions and regulatory networks of MUC family members in colorectal cancer based on comprehensive analysis of online database. Materials & methods: Copy number variation, methylation, pathway analysis and drug influence on MUC expression were analyzed based on The Cancer Genome Atlas and GTEx database. Results: Copy number variation analysis showed MUC heterozygous amplification and heterozygous deletion predominate. Methylation of MUC17, MUC12 and MUC4 were found related to gene expression. Function of MUC family genes mainly affects pathways such as apoptosis, cell cycle, DNA damage and EMT pathways. PLX4720, dabrafenib, gefitinib, afatinib and austocystin D can alter the expression of MUC gene. Conclusion: The genetic and epigenetic changes of MUC are related to the level of MUC expression in colorectal cancer.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yong Joon Kim ◽  
Seo Jin Park ◽  
Kyung Joo Maeng ◽  
Sung Chul Lee ◽  
Christopher Seungkyu Lee

AbstractCurrently, there is no effective treatment for metastatic uveal melanoma (UVM). Here, we aimed to identify the mechanism involving intrinsic chemoresistance of metastatic UVM and the relevant therapeutic targets for UVM. We analyzed cohorts of 80 and 67 patients with primary UVM and skin cutaneous melanoma (SKCM), respectively, using The Cancer Genome Atlas dataset. Mutational burdens identified by whole exome sequencing were significantly lower in UVM than in SKCM patients. COSMIC mutational signature analysis identified that most of the mutations in UVM patients (>90%) were associated with spontaneous deamination of 5-methylcytosine or defective mismatch repair. Transcriptome analysis revealed that the MYC signature was more enriched in UVM patients, as compared to SKCM patients. Fifty-nine (73.8%) of 80 UVM patients showed gains in MYC copy number, and a high MYC copy number was associated with aggressive clinicopathological features of tumors and poor survival. Kinome-wide siRNA library screening identified several therapeutic targets, reported as synthetic lethal targets for MYC-addicted cancers. Notably, UVM cell lines showed high susceptibility to a WEE1 inhibitor (MK-1775; adavosertib) at a clinically tolerable dose. Overall, our study identified high MYC activity in UVM, and suggested G2/M checkpoint inhibitors as effective therapeutic targets for UVM.


2016 ◽  
Vol 4 (2) ◽  
pp. 34-41
Author(s):  
Chiara Della Pepa ◽  
Susana Banerjee ◽  
Angela George

Endometrial cancer (EC) is the most common female malignancy in the world, it has traditionally been classified into two subgroups based on histopathological features, however this dualistic classification does not take into consideration subtypes such as high-grade endometrioid EC. Recently, work performed as part of The Cancer Genome Atlas study has focused on molecular genomic classification of EC, with four distinct molecular subtypes described: 1. POLE ultramutated, associated with a good prognosis; 2. Microsatellite instability (MSI) hypermutated; 3. Copy number low and microsatellite stable; 4. Copy number high, serous like, associated with a poor prognosis. The subgroup of patients with MSI is of particular interest for a number of reasons, including the use of tumour screening to identify patients with Lynch syndrome, the prognostic significance of MSI, and the potential therapeutic implications. This review will focus on the current knowledge in these areas and potential future directions.


2021 ◽  
Author(s):  
Shiro Takamatsu ◽  
J.B. Brown ◽  
Ken Yamaguchi ◽  
Junzo Hamanishi ◽  
Koji Yamanoi ◽  
...  

AbstractBackgroundGenomic alterations in BRCA1/2 and genomic scar signatures are associated with homologous recombination DNA repair deficiency (HRD) and serve as therapeutic biomarkers for platinum and PARP inhibitors in breast and ovarian cancers. However, the clinical significance of these biomarkers in other homologous recombination repair-related genes or other cancer types is not fully understood.ResultsWe analyzed the datasets of all solid cancers from The Cancer Genome Atlas and Cancer Cell Line Encyclopedia, and found that the association between biallelic alterations in the homologous recombination pathway genes and genomic scar signatures differed greatly depending on gender and the presence of somatic TP53 mutation. Additionally, HRD cases identified by a combination of these indicators showed higher sensitivity to DNA-damaging drugs than non-HRD cases both in clinical samples and cell lines.ConclusionOur work provides novel proof of the utility of HRD analysis for all cancer types and will improve the precision and efficacy of chemotherapy selection in clinical oncology.


Author(s):  
Fan Kou ◽  
Lei Wu ◽  
Ye Zhu ◽  
Baihui Li ◽  
Ziqi Huang ◽  
...  

AbstractSomatic copy number alterations (SCNA), which are widespread in cancer, can predict the efficacy of immune checkpoint inhibitors in non-small-cell lung cancer (NSCLC). However, the usefulness of SCNA for predicting the survival of patients treated with cytokine-induced killer (CIK) cells or chemotherapy (CT) is unknown. This study aimed to explore the correlation between SCNA and clinical outcome in NSCLC patients treated with CIK + CT or CT alone. We performed whole-exome sequencing on 45 NSCLC patients treated with CIK + CT, as well as 305 NSCLC patients treated with CT alone, from The Cancer Genome Atlas, which showed SCNA had a superiority in predicting the progression-free survival (PFS) over tumor mutation burden (TMB) and SCNA + TMB in NSCLC patients treated with CIK + CT, especially in lung adenocarcinoma, while SCNA could not predict the efficacy of CT alone. Additionally, we investigated the association between SCNA and immune cell infiltration by RNA sequencing and immunohistochemistry. The results revealed that SCNA was negatively associated with the expression of dendritic cells. Collectively, this study revealed a negative correlation between SCNA and response to CIK + CT and showed that SCNA is a predictive indicator in LUAD patients treated with CIK + CT.


2021 ◽  
Vol 49 (1) ◽  
pp. 030006052098153
Author(s):  
Qing Bi ◽  
Yang Liu ◽  
Tao Yuan ◽  
Huizhen Wang ◽  
Bin Li ◽  
...  

Objective The role of tumor-infiltrating lymphocytes (TILs) has not yet been characterized in sarcomas. The aim of this bioinformatics study was to explore the effect of TILs on sarcoma survival and genome alterations. Methods Whole-exome sequencing, transcriptome sequencing, and survival data of sarcoma were obtained from The Cancer Genome Atlas. Immune infiltration scores were calculated using the Tumor Immune Estimation Resource. Potential associations between abundance of infiltrating TILs and survival or genome alterations were examined. Results Levels of CD4+ T cell infiltration were associated with overall survival of patients with pan-sarcomas, and higher CD4+ T cell infiltration levels were associated with better survival. Somatic copy number alterations, rather than mutations, were found to correlate with CD4+ T cell infiltration levels. Conclusions This data mining study indicated that CD4+ T cell infiltration levels predicted from RNA sequencing could predict sarcoma prognosis, and higher levels of CD4+ T cells infiltration indicated a better chance of survival.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kristina Totland Carm ◽  
Andreas M. Hoff ◽  
Anne Cathrine Bakken ◽  
Ulrika Axcrona ◽  
Karol Axcrona ◽  
...  

Abstract Prostate cancer is a highly heterogeneous disease and typically multiple distinct cancer foci are present at primary diagnosis. Molecular classification of prostate cancer can potentially aid the precision of diagnosis and treatment. A promising genomic classifier was published by The Cancer Genome Atlas (TCGA), successfully classifying 74% of primary prostate cancers into seven groups based on one cancer sample per patient. Here, we explore the clinical usefulness of this classification by testing the classifier’s performance in a multifocal context. We analyzed 106 cancer samples from 85 distinct cancer foci within 39 patients. By somatic mutation data from whole-exome sequencing and targeted qualitative and quantitative gene expression assays, 31% of the patients were uniquely classified into one of the seven TCGA classes. Further, different samples from the same focus had conflicting classification in 12% of the foci. In conclusion, the level of both intra- and interfocal heterogeneity is extensive and must be taken into consideration in the development of clinically useful molecular classification of primary prostate cancer.


Sign in / Sign up

Export Citation Format

Share Document