scholarly journals Assisted assembly of bacteriophage T7 core components for genome translocation across the bacterial envelope

2021 ◽  
Vol 118 (34) ◽  
pp. e2026719118
Author(s):  
Mar Pérez-Ruiz ◽  
Mar Pulido-Cid ◽  
Juan Román Luque-Ortega ◽  
José María Valpuesta ◽  
Ana Cuervo ◽  
...  

In most bacteriophages, genome transport across bacterial envelopes is carried out by the tail machinery. In viruses of the Podoviridae family, in which the tail is not long enough to traverse the bacterial wall, it has been postulated that viral core proteins assembled inside the viral head are translocated and reassembled into a tube within the periplasm that extends the tail channel. Bacteriophage T7 infects Escherichia coli, and despite extensive studies, the precise mechanism by which its genome is translocated remains unknown. Using cryo-electron microscopy, we have resolved the structure of two different assemblies of the T7 DNA translocation complex composed of the core proteins gp15 and gp16. Gp15 alone forms a partially folded hexamer, which is further assembled upon interaction with gp16 into a tubular structure, forming a channel that could allow DNA passage. The structure of the gp15–gp16 complex also shows the location within gp16 of a canonical transglycosylase motif involved in the degradation of the bacterial peptidoglycan layer. This complex docks well in the tail extension structure found in the periplasm of T7-infected bacteria and matches the sixfold symmetry of the phage tail. In such cases, gp15 and gp16 that are initially present in the T7 capsid eightfold-symmetric core would change their oligomeric state upon reassembly in the periplasm. Altogether, these results allow us to propose a model for the assembly of the core translocation complex in the periplasm, which furthers understanding of the molecular mechanism involved in the release of T7 viral DNA into the bacterial cytoplasm.

2021 ◽  
Author(s):  
Mar Pérez-Ruiz ◽  
Mar Pulido-Cid ◽  
Juan Román Luque-Ortega ◽  
José María Valpuesta ◽  
Ana Cuervo ◽  
...  

ABSTRACTIn most bacteriophages, the genome transport across bacterial envelopes is carried out by the tail machinery. In Podoviridae viruses, where the tail is not long enough to traverse the bacterial wall, it has been postulated that viral core proteins are translocated and assembled into a tube within the periplasm. T7 bacteriophage, a member from the Podoviridae family, infects E. coli gram-negative bacteria. Despite extensive studies, the precise mechanism by which this virus translocates its genome remains unknown. Using cryo-electron microscopy, we have resolved the structure two different assemblies of the T7 bacteriophage DNA translocation complex, built by core proteins gp15 and gp16. Gp15 alone forms a partially folded hexamer, which is further assembled by interaction with gp16, resulting in a tubular structure with dimensions compatible with traversing the bacterial envelope and a channel that allows DNA passage. The structure of the gp15-gp16 complex also shows the location in gp16 of a canonical transglycosylase motif essential in the bacterial peptidoglycan layer degradation. Altogether these results allow us to propose a model for the assembly of the core translocation complex in the periplasm, which helps in the understanding at the molecular level of the mechanism involved in the T7 viral DNA release in the bacterial cytoplasm.SIGNIFICANCE STATEMENTT7 bacteriophage infects E. coli bacteria. During this process, the DNA transverses the bacterial cell wall, but the precise mechanism used by the virus remains unknown. Previous studies suggested that proteins found inside the viral capsid (core proteins) disassemble and reassemble in the bacterial periplasm to form a DNA translocation channel. In this article we solved by cryo-electron microscopy two different assemblies of the core proteins that reveal the steps followed by them to finally form a tube large enough to traverse the periplasm, as well as the location of the transglycosylase enzyme involved in peptidoglycan degradation. These findings confirm previously postulated hypothesis and make experimentally visible the mechanism of DNA transport trough the bacterial wall.


2014 ◽  
Author(s):  
Chun-Yu Lin ◽  
Tsai-ling Lee ◽  
Yi-Wei Lin ◽  
Yu-Shu Lo ◽  
Chih-Ta Lin ◽  
...  

AbstractA module is a group of closely related proteins that act in concert to perform specific biological functions through protein–protein interactions (PPIs) that occur in time and space. However, the underlying organizational principles of a module remain unclear. In this study, we collected CORUM module templates to infer respective module families, including 58,041 homologous modules in 1,678 species, and PPI families using searches of complete genomic database. We then derived PPI evolution scores (PPIES) and interface evolution scores (IES) to infer module elements, including core and ring components. Functions of core components were highly correlated (Pearson’s r = 0.98) with those of 11,384 essential genes. In comparison with ring components, core proteins and PPIs were conserved in multiple species. Subsequently, protein dynamics and module dynamics of biological networks and functional diversities confirmed that core components form dynamic biological network hubs and play key roles in various biological functions. PPIES and IES can reflect module organization principles and protein/module dynamics in biological networks. On the basis of the analyses of gene essentiality, module dynamics, network topology, and gene co-expression, the module organizational principles can be described as follows: 1) a module consists of core and ring components; 2) the core components play major roles in biological functions and collaborate with ring components to perform certain functions in some cases; 3) the core components are conserved and essential in module dynamics in time and space.


Author(s):  
Naiqian Cheng ◽  
Mario E. Cerritelli ◽  
Alan H. Rosenberg ◽  
Frank P. Booy ◽  
Alasdair C. Steven

The packaging of viral DNA into a pre-formed procapsid structure and its subsequent release from the mature virion during infection, constitutes one of the basic phenomena of the viral life-cycle which still remains to be understood. The DNA must package at a high density into the head to allow efficient utilization of the space available, overcome the mutual electrostatic repulsive forces between the strands, and be readily available for release upon infection. Cryo-electron microscopy has proven to be an invaluable tool for visualizing the internal organization of the packaged DNA inside viral capsids. We report on the effectiveness of this technique in examining the packaging of the ∼40,000 bp double-stranded DNA genome inside the capsids of bacteriophage T7.


Author(s):  
Kathrine S. H. Beckham ◽  
Christina Ritter ◽  
Grzegorz Chojnowski ◽  
Edukondalu Mullapudi ◽  
Mandy Rettel ◽  
...  

AbstractTo establish an infection, pathogenic mycobacteria use the Type VII secretion or ESX system to secrete virulence proteins across their cell envelope. The five ESX systems (ESX-1 to ESX-5) have evolved diverse functions in the cell, with the ESX-5 found almost exclusively in pathogens. Here we present a high-resolution cryo-electron microscopy structure of the hexameric ESX-5 Type VII secretion system. This 2.1 MDa membrane protein complex is built by a total of 30 subunits from six protomeric units, which are composed of the core components EccB5, EccC5, two copies of EccD5, and EccE5. The hexameric assembly of the overall ESX-5 complex is defined by specific inter-protomer interactions mediated by EccB5 and EccC5. The central transmembrane pore is formed by six pairs of EccC5 transmembrane helices that adopt a closed conformation in the absence of substrate in our structure. On the periplasmic face of the ESX-5 complex, we observe an extended arrangement of the six EccB5 subunits around a central cleft. Our structural findings provide molecular details of ESX-5 assembly and observations of the central secretion pore, which reveal insights into possible gating mechanisms used to regulate the transport of substrates.


Author(s):  
P. Serwer

The genome of bacteriophage T7 is a duplex DNA molecule packaged in a space whose volume has been measured to be 2.2 x the volume of the B form of T7 DNA. To help determine the mechanism for packaging this DNA, the configuration of proteins inside the phage head has been investigated by electron microscopy. A core which is roughly cylindrical in outline has been observed inside the head of phage T7 using three different specimen preparation techniques.When T7 phage are treated with glutaraldehyde, DNA is ejected from the head often revealing an internal core (dark arrows in Fig. 1). When both the core and tail are present in a particle, the core appears to be coaxial with the tail. Core-tail complexes sometimes dislodge from their normal location and appear attached to the outside of a phage head (light arrow in Fig. 1).


2021 ◽  
Vol 7 (3) ◽  
pp. eabe2631
Author(s):  
David J. K. Swainsbury ◽  
Pu Qian ◽  
Philip J. Jackson ◽  
Kaitlyn M. Faries ◽  
Dariusz M. Niedzwiedzki ◽  
...  

The reaction-center light-harvesting complex 1 (RC-LH1) is the core photosynthetic component in purple phototrophic bacteria. We present two cryo–electron microscopy structures of RC-LH1 complexes from Rhodopseudomonas palustris. A 2.65-Å resolution structure of the RC-LH114-W complex consists of an open 14-subunit LH1 ring surrounding the RC interrupted by protein-W, whereas the complex without protein-W at 2.80-Å resolution comprises an RC completely encircled by a closed, 16-subunit LH1 ring. Comparison of these structures provides insights into quinone dynamics within RC-LH1 complexes, including a previously unidentified conformational change upon quinone binding at the RC QB site, and the locations of accessory quinone binding sites that aid their delivery to the RC. The structurally unique protein-W prevents LH1 ring closure, creating a channel for accelerated quinone/quinol exchange.


2021 ◽  
Vol 93 ◽  
pp. 107278
Author(s):  
Jhonattan Miranda ◽  
Christelle Navarrete ◽  
Julieta Noguez ◽  
José-Martin Molina-Espinosa ◽  
María-Soledad Ramírez-Montoya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document