scholarly journals Defensive hypervariable regions confer superinfection exclusion in microviruses

2021 ◽  
Vol 118 (28) ◽  
pp. e2102786118
Author(s):  
Paul C. Kirchberger ◽  
Zachary A. Martinez ◽  
Landry J. Luker ◽  
Howard Ochman

Single-stranded DNA phages of the family Microviridae have fundamentally different evolutionary origins and dynamics than the more frequently studied double-stranded DNA phages. Despite their small size (around 5 kb), which imposes extreme constraints on genomic innovation, they have adapted to become prominent members of viromes in numerous ecosystems and hold a dominant position among viruses in the human gut. We show that multiple, divergent lineages in the family Microviridae have independently become capable of lysogenizing hosts and have convergently developed hypervariable regions in their DNA pilot protein, which is responsible for injecting the phage genome into the host. By creating microviruses with combinations of genomic segments from different phages and infecting Escherichia coli as a model system, we demonstrate that this hypervariable region confers the ability of temperate Microviridae to prevent DNA injection and infection by other microviruses. The DNA pilot protein is present in most microviruses, but has been recruited repeatedly into this additional role as microviruses altered their lifestyle by evolving the ability to integrate in bacterial genomes, which linked their survival to that of their hosts. Our results emphasize that competition between viruses is a considerable and often overlooked source of selective pressure, and by producing similar evolutionary outcomes in distinct lineages, it underlies the prevalence of hypervariable regions in the genomes of microviruses and perhaps beyond.

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Bret M. Boyd ◽  
Germain Chevignon ◽  
Vilas Patel ◽  
Kerry M. Oliver ◽  
Michael R. Strand

Abstract Background Most phages infect free-living bacteria but a few have been identified that infect heritable symbionts of insects or other eukaryotes. Heritable symbionts are usually specialized and isolated from other bacteria with little known about the origins of associated phages. Hamiltonella defensa is a heritable bacterial symbiont of aphids that is usually infected by a tailed, double-stranded DNA phage named APSE. Methods We conducted comparative genomic and phylogenetic studies to determine how APSE is related to other phages and prophages. Results Each APSE genome was organized into four modules and two predicted functional units. Gene content and order were near-fully conserved in modules 1 and 2, which encode predicted DNA metabolism genes, and module 4, which encodes predicted virion assembly genes. Gene content of module 3, which contains predicted toxin, holin and lysozyme genes differed among haplotypes. Comparisons to other sequenced phages suggested APSE genomes are mosaics with modules 1 and 2 sharing similarities with Bordetella-Bcep-Xylostella fastidiosa-like podoviruses, module 4 sharing similarities with P22-like podoviruses, and module 3 sharing no similarities with known phages. Comparisons to other sequenced bacterial genomes identified APSE-like elements in other heritable insect symbionts (Arsenophonus spp.) and enteric bacteria in the family Morganellaceae. Conclusions APSEs are most closely related to phage elements in the genus Arsenophonus and other bacteria in the Morganellaceae.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
David Pellow ◽  
Alvah Zorea ◽  
Maraike Probst ◽  
Ori Furman ◽  
Arik Segal ◽  
...  

Abstract Background Metagenomic sequencing has led to the identification and assembly of many new bacterial genome sequences. These bacteria often contain plasmids: usually small, circular double-stranded DNA molecules that may transfer across bacterial species and confer antibiotic resistance. These plasmids are generally less studied and understood than their bacterial hosts. Part of the reason for this is insufficient computational tools enabling the analysis of plasmids in metagenomic samples. Results We developed SCAPP (Sequence Contents-Aware Plasmid Peeler)—an algorithm and tool to assemble plasmid sequences from metagenomic sequencing. SCAPP builds on some key ideas from the Recycler algorithm while improving plasmid assemblies by integrating biological knowledge about plasmids. We compared the performance of SCAPP to Recycler and metaplasmidSPAdes on simulated metagenomes, real human gut microbiome samples, and a human gut plasmidome dataset that we generated. We also created plasmidome and metagenome data from the same cow rumen sample and used the parallel sequencing data to create a novel assessment procedure. Overall, SCAPP outperformed Recycler and metaplasmidSPAdes across this wide range of datasets. Conclusions SCAPP is an easy to use Python package that enables the assembly of full plasmid sequences from metagenomic samples. It outperformed existing metagenomic plasmid assemblers in most cases and assembled novel and clinically relevant plasmids in samples we generated such as a human gut plasmidome. SCAPP is open-source software available from: https://github.com/Shamir-Lab/SCAPP.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1377
Author(s):  
Adriano M. Gigante ◽  
Francisco Olivença ◽  
Maria João Catalão ◽  
Paula Leandro ◽  
José Moniz-Pereira ◽  
...  

Double-stranded DNA bacteriophages end their lytic cycle by disrupting the host cell envelope, which allows the release of the virion progeny. Each phage must synthesize lysis proteins that target each cell barrier to phage release. In addition to holins, which permeabilize the cytoplasmic membrane, and endolysins, which disrupt the peptidoglycan (PG), mycobacteriophages synthesize a specific lysis protein, LysB, capable of detaching the outer membrane from the complex cell wall of mycobacteria. The family of LysB proteins is highly diverse, with many members presenting an extended N-terminus. The N-terminal region of mycobacteriophage Ms6 LysB shows structural similarity to the PG-binding domain (PGBD) of the φKZ endolysin. A fusion of this region with enhanced green fluorescent protein (Ms6LysBPGBD-EGFP) was shown to bind to Mycobacterium smegmatis, Mycobacterium vaccae, Mycobacterium bovis BGC and Mycobacterium tuberculosis H37Ra cells pretreated with SDS or Ms6 LysB. In pulldown assays, we demonstrate that Ms6 LysB and Ms6LysBPGBD-EGFP bind to purified peptidoglycan of M. smegmatis, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis, demonstrating affinity to PG of the A1γ chemotype. An infection assay with an Ms6 mutant producing a truncated version of LysB lacking the first 90 amino acids resulted in an abrupt lysis. These results clearly demonstrate that the N-terminus of Ms6 LysB binds to the PG.


Author(s):  
Lauren Ash ◽  
Rachel Marschang ◽  
Jolianne Rijks ◽  
Amanda Duffus

Ranaviruses are large double stranded DNA viruses from the family Iridoviridae. They are globally distributed and are currently known to affect fish, reptiles and amphibians. In North America, ranaviruses are also widely distributed, and cause frequent morbidity and mortality events in both wild and cultured populations. This is a synopsys of the North American content of the 4th International Symposium on Ranaviruses held in May 2017 in Budapest, Hungary.


2000 ◽  
Vol 4 (2) ◽  
pp. 76-82 ◽  
Author(s):  
Elizabeth Liota ◽  
Kathleen J. Smith ◽  
Ronald Buckley ◽  
Padmen Menon ◽  
Henry Skelton

Background: Molluscum contagiosum virus (MCV) is a large double-stranded DNA virus that is a member of the family Poxviridae, and which has a worldwide distribution. As with other poxviruses, MCV does not appear to develop latency but evades the immune system through the production of viral specific proteins. Objective: To evaluate the therapeutic efficacy of imiquimod 5% cream for MCV. Methods: Thirteen children >5 and <10 years old, 19 immune-competent adults and four adults with advanced, but stable HIV-1 disease with >10 MCV lesions were treated with topical 5% imiquimod cream three times weekly for up to 16 weeks. Results: Fourteen of 19 immune-competent adults, four of four adults with HIV-1 disease, and six of 13 children had resolution of their MCV lesions in <16 weeks of imiquimod therapy. Children tended to have more pruritus and inflammatory reactions with imiquimod, although most treated lesions appeared to respond. The development of new MCV lesions resulted in a lower overall resolution of the lesions in children. Imiquimod appeared to be the most efficacious in patients with HIV-1 disease and in the genital area in immune-competent adults. Conclusion: Although topical imiquimod appears to have some efficacy in the therapy of MCV, in children the pruritus correlated relatively well with the development of new lesions. In adults, areas that would be expected to have better penetration appeared to respond more consistently. Although the HIV-1-positive patients had the largest clinical lesions at the onset of therapy, as a group they had the best overall response to therapy.


2018 ◽  
Vol 7 (12) ◽  
Author(s):  
María Angélica Contreras-Gutiérrez ◽  
Hilda Guzman ◽  
Jedson F. Cardoso ◽  
Vsevolod L. Popov ◽  
Marcio R. T. Nunes ◽  
...  

We report here the complete genome sequence of a novel reovirus, designated Chiqui virus (CHQV) strain CoB38d, that was isolated from a pool of unidentified mosquitoes collected in northern Colombia in 2013. CHQV has nine double-stranded DNA (dsRNA) genome segments and has similarity to viruses belonging to the family Reoviridae, subfamily Spinareovirinae.


Plant Disease ◽  
2020 ◽  
Vol 104 (10) ◽  
pp. 2713-2719 ◽  
Author(s):  
Fei Xing ◽  
Wanying Hou ◽  
Sebastien Massart ◽  
Dehang Gao ◽  
Wenhui Li ◽  
...  

Apple mosaic disease is widespread in the major apple-producing areas in China and is frequently associated with the presence of the newly identified Apple necrotic mosaic virus (ApNMV), belonging to subgroup 3 of Ilarvirus genus in the family of Bromoviridae. Mosaic symptoms were also observed in a hawthorn tree. Deep sequencing revealed the hawthorn tree with mosaic symptom was infected by ApNMV, which was confirmed by RT-PCR. The complete nucleotide sequences of RNA1 (3,378 nt), RNA2 (2,778 nt), and RNA3 (1,917 nt) of ApNMV from the hawthorn were obtained, sharing 93.8 to 96.8%, 89.7 to 96.1%, and 89.8 to 94.6% nucleotide identities with those from apples and crabapples, respectively. Two hypervariable regions were found, which showed 59.2 to 85.7% and 64.0 to 89.3% sequence identities at position 142 to 198 aa and at position 780 to 864 aa in the POL protein, respectively, between the hawthorn isolate and other isolates (apple, crabapple). A grafting test demonstrated that ApNMV was easily transmissible from hawthorns to apple trees, with severe chlorosis, yellowing, mosaic, curling, and necrosis. In addition, a total of 11,685 hawthorn trees were surveyed for the incidence of mosaic disease from five provinces in China, and only six were found showing typical mosaic symptoms. A total of 145 individual trees (six symptomatic, 68 asymptomatic, and 71 other symptoms) were tested for the presence or absence of ApNMV by RT-PCR. Among them, six symptomatic, four asymptomatic, and 10 other symptomatic trees tested positive for ApNMV. Taken together, these results demonstrated that the hawthorn tree was identified as a new natural host for ApNMV with a relatively low frequency (13.8%, 20 out of 145) in the main producing areas, and it was likely to be the causal pathogen of hawthorn mosaic disease.


2016 ◽  
Vol 113 (33) ◽  
pp. 9351-9356 ◽  
Author(s):  
Jiří Nováček ◽  
Marta Šiborová ◽  
Martin Benešík ◽  
Roman Pantůček ◽  
Jiří Doškař ◽  
...  

Bacteriophages from the family Myoviridae use double-layered contractile tails to infect bacteria. Contraction of the tail sheath enables the tail tube to penetrate through the bacterial cell wall and serve as a channel for the transport of the phage genome into the cytoplasm. However, the mechanisms controlling the tail contraction and genome release of phages with “double-layered” baseplates were unknown. We used cryo-electron microscopy to show that the binding of the Twort-like phage phi812 to the Staphylococcus aureus cell wall requires a 210° rotation of the heterohexameric receptor-binding and tripod protein complexes within its baseplate about an axis perpendicular to the sixfold axis of the tail. This rotation reorients the receptor-binding proteins to point away from the phage head, and also results in disruption of the interaction of the tripod proteins with the tail sheath, hence triggering its contraction. However, the tail sheath contraction of Myoviridae phages is not sufficient to induce genome ejection. We show that the end of the phi812 double-stranded DNA genome is bound to one protein subunit from a connector complex that also forms an interface between the phage head and tail. The tail sheath contraction induces conformational changes of the neck and connector that result in disruption of the DNA binding. The genome penetrates into the neck, but is stopped at a bottleneck before the tail tube. A subsequent structural change of the tail tube induced by its interaction with the S. aureus cell is required for the genome’s release.


1998 ◽  
Vol 64 (2) ◽  
pp. 535-542 ◽  
Author(s):  
Sunny C. Jiang ◽  
Christina A. Kellogg ◽  
John H. Paul

ABSTRACT To understand the ecological and genetic role of viruses in the marine environment, it is critical to know the infectivity of viruses and the types of interactions that occur between marine viruses and their hosts. We isolated four marine phages from turbid plaques by using four indigenous bacterial hosts obtained from concentrated water samples from Mamala Bay, Oahu, Hawaii. Two of the rod-shaped bacterial hosts were identified as Sphingomonas paucimobilis andFlavobacterium sp. All of the phage isolates were tailed phages and contained double-stranded DNA. Two of the phage isolates had morphologies typical of the family Siphoviridae, while the other two belonged to the families Myoviridae andPodoviridae. The head diameters of these viruses ranged from 47 to 70.7 nm, and the tail lengths ranged from 12 to 146 nm. The burst sizes ranged from 7.8 to 240 phage/bacterial cell, and the genome sizes, as determined by restriction digestion, ranged from 36 to 112 kb. The members of the Siphoviridae, T-φHSIC, and T-φD0, and the member of the Myoviridae, T-φD1B, were found to form lysogenic associations with their bacterial hosts, which were isolated from the same water samples. Hybridization of phage T-φHSIC probe with lysogenic host genomic DNA was observed in dot blot hybridization experiments, indicating that prophage T-φHSIC was integrated within the host genome. These phage-host systems are available for use in studies of marine lysogeny and transduction.


2011 ◽  
Vol 77 (12) ◽  
pp. 3923-3929 ◽  
Author(s):  
Steve Petrovski ◽  
Robert J. Seviour ◽  
Daniel Tillett

ABSTRACTHydrophobicActinobacteriaare commonly associated with the stabilization of foams in activated sludge systems. One possible attractive approach to control these foam-stabilizing organisms is the use of specific bacteriophages. We describe the genome characterization of a novel polyvalent DNA phage, GTE2, isolated from activated sludge. This phage is lytic forGordonia terrae,Rhodococcus globerulus,Rhodococcus erythropolis,Rhodococcus erythropolis,Nocardia otitidiscaviarum, andNocardia brasiliensis. Phage GTE2 belongs to the familySiphoviridae, possessing a characteristic icosahedral head encapsulating a double-stranded DNA linear genome (45,530 bp) having 10-bp 3′-protruding cohesive ends. The genome sequence is 98% unique at the DNA level and contains 57 putative genes. The genome can be divided into two components, where the first is modular and encodes phage structural proteins and lysis genes. The second is not modular, and the genes harbored there are involved in DNA replication, repair, and metabolism. Some have no known function. GTE2 shows promising results in controlling stable foam production by its host bacteria under laboratory conditions, suggesting that it may prove useful in the field as a biocontrol agent.


Sign in / Sign up

Export Citation Format

Share Document