scholarly journals The radish Ogura fertility restorer impedes translation elongation along its cognate CMS-causing mRNA

2021 ◽  
Vol 118 (35) ◽  
pp. e2105274118
Author(s):  
Chuande Wang ◽  
Lina Lezhneva ◽  
Nadège Arnal ◽  
Martine Quadrado ◽  
Hakim Mireau

The control of messenger RNA (mRNA) translation has been increasingly recognized as a key regulatory step for gene control, but clear examples in eukaryotes are still scarce. Nucleo-cytoplasmic male sterilities (CMS) represent ideal genetic models to dissect genetic interactions between the mitochondria and the nucleus in plants. This trait is determined by specific mitochondrial genes and is associated with a pollen sterility phenotype that can be suppressed by nuclear genes known as restorer-of-fertility (Rf). In this study, we focused on the Ogura CMS system in rapeseed and showed that reversion to male sterility by the PPR-B fertility restorer (also called Rfo) occurs through a specific translation inhibition of the mitochondria-encoded CMS-causing mRNA orf138. We also demonstrate that PPR-B binds within the coding sequence of orf138 and acts as a ribosome blocker to specifically impede translation elongation along the orf138 mRNA. Rfo is the first recognized fertility restorer shown to act this way. These observations will certainly facilitate the development of synthetic fertility restorers for CMS systems in which efficient natural Rfs are lacking.

2021 ◽  
Author(s):  
Chuande Wang ◽  
Lina Lezhneva ◽  
Nadège Arnal ◽  
Martine Quadrado ◽  
Hakim Mireau

AbstractThe control of mRNA translation has been increasingly recognized as a key regulatory step for gene control but clear examples in eukaryotes are still scarce. Nucleo-cytoplasmic male sterilities (CMS) represent ideal genetic models to dissect genetic interactions between the mitochondria and the nucleus in plants. This trait is determined by specific mitochondrial genes and is associated with a pollen sterility phenotype that can be suppressed by nuclear genes known as restorer-of-fertility (Rf) genes. In the study, we focused on the Ogura CMS system in rapeseed and showed that the suppression to male sterility by the PPR-B fertility restorer (also called Rfo) occurs through a specific inhibition of the translation of the mitochondria-encoded CMS-causing mRNA orf138. We also demonstrate that PPR-B binds within the coding sequence of orf138 and acts as a ribosome blocker to specifically impede translation elongation along the orf138 mRNA. Rfo is the first recognized fertility restorer shown to act this way. These observations will certainly facilitate the development of synthetic fertility restorers for CMS systems in which efficient natural Rfs are lacking.


2019 ◽  
Vol 117 (1) ◽  
pp. 761-770 ◽  
Author(s):  
Xinrong Ma ◽  
Fadia Ibrahim ◽  
Eun-Jeong Kim ◽  
Scott Shaver ◽  
James Becker ◽  
...  

Small RNAs (sRNAs) associate with Argonaute (AGO) proteins in effector complexes, termed RNA-induced silencing complexes (RISCs), which regulate complementary transcripts by translation inhibition and/or RNA degradation. In the unicellular algaChlamydomonas, several metazoans, and land plants, emerging evidence indicates that polyribosome-associated transcripts can be translationally repressed by RISCs without substantial messenger RNA (mRNA) destabilization. However, the mechanism of translation inhibition in a polyribosomal context is not understood. Here we show thatChlamydomonasVIG1, an ortholog of theDrosophila melanogasterVasa intronic gene (VIG), is required for this process. VIG1 localizes predominantly in the cytosol and comigrates with monoribosomes and polyribosomes by sucrose density gradient sedimentation. AVIG1-deleted mutant shows hypersensitivity to the translation elongation inhibitor cycloheximide, suggesting that VIG1 may have a nonessential role in ribosome function/structure. Additionally, FLAG-tagged VIG1 copurifies with AGO3 and Dicer-like 3 (DCL3), consistent with it also being a component of the RISC. Indeed, VIG1 is necessary for the repression of sRNA-targeted transcripts at the translational level but is dispensable for cleavage-mediated RNA interference and for the association of the AGO3 effector with polyribosomes or target transcripts. Our results suggest that VIG1 is an ancillary ribosomal component and plays a role in sRNA-mediated translation repression of polyribosomal transcripts.


2020 ◽  
Vol 57 (3) ◽  
pp. 181-189
Author(s):  
Asma Majid ◽  
GA Parray ◽  
NR Sofi ◽  
Gazala H Khan ◽  
Showkat A Waza ◽  
...  

Rice being a staple food crop of Kashmir valley, the focus is on enhancement of yield in order to meet the needs of ever-growing population.Identification of new parental lines is crucial for developing ecology-specific hybrids with ideal agronomic performance. Exploitation of heterosis in the form of hybrid rice technology can be one of the approaches to increase productivity in this crop, especially exploiting diversity among japonica lines can serve as an excellent route.A number of CMS lines suitable formountainous areas of Kashmir have been developed, however, the availability of promising restorer lines remains to be the major limitation for utilization of these lines.Identification of potential restorers acts as the main limiting factor for hybrid development in the Kashmir valley. Marker based screening for Rf3 and Rf4 fertility restorer genes can be helpful in rapid selection of restorer lines while dealing with the large quantity of genetic materials. In the present study, 100 rice germplasm were screened with the help of SSR markers, RM3148 and RM6100linked to Rf3 and Rf4 genes on chromosome 1 and 10, respectively. In total, 19 lines revealed the presence of both Rf3 and Rf4 genes. These lines amplified fertility restorer specific alleles for both the genes and may serve as potential restorers for obtaining heterotic rice hybrids. Further the germplasm lines were also evaluated for yield and quality traits.The present results would help in selection of suitable restorers along with preferred grain shape/size.


2002 ◽  
Vol 357 (1420) ◽  
pp. 521-529 ◽  
Author(s):  
Shao Jun Tang ◽  
Erin M. Schuman

In neurons, many proteins that are involved in the transduction of synaptic activity and the expression of neural plasticity are specifically localized at synapses. How these proteins are targeted is not clearly understood. One mechanism is synaptic protein synthesis. According to this idea, messenger RNA (mRNA) translation from the polyribosomes that are observed at the synaptic regions provides a local source of synaptic proteins. Although an increasing number of mRNA species has been detected in the dendrite, information about the synaptic synthesis of specific proteins in a physiological context is still limited. The physiological function of synaptic synthesis of specific proteins in synaptogenesis and neural plasticity expression remains to be shown. Experiments aimed at understanding the mechanisms and functions f synaptic protein synthesis might provide important information about the molecular nature of neural plasticity.


2007 ◽  
Vol 83 (3) ◽  
pp. 353-361 ◽  
Author(s):  
Marianne Koritzinsky ◽  
Kasper M.A. Rouschop ◽  
Twan van den Beucken ◽  
Michaël G. Magagnin ◽  
Kim Savelkouls ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Victor Barrenechea ◽  
Maryhory Vargas-Reyes ◽  
Miguel Quiliano ◽  
Pohl Milón

Tetracycline has positively impacted human health as well as the farming and animal industries. Its extensive usage and versatility led to the spread of resistance mechanisms followed by the development of new variants of the antibiotic. Tetracyclines inhibit bacterial growth by impeding the binding of elongator tRNAs to the ribosome. However, a small number of reports indicated that Tetracyclines could also inhibit translation initiation, yet the molecular mechanism remained unknown. Here, we use biochemical and computational methods to study how Oxytetracycline (Otc), Demeclocycline (Dem), and Tigecycline (Tig) affect the translation initiation phase of protein synthesis. Our results show that all three Tetracyclines induce Initiation Factor IF3 to adopt a compact conformation on the 30S ribosomal subunit, similar to that induced by Initiation Factor IF1. This compaction was faster for Tig than Dem or Otc. Furthermore, all three tested tetracyclines affected IF1-bound 30S complexes. The dissociation rate constant of IF1 in early 30S complexes was 14-fold slower for Tig than Dem or Otc. Late 30S initiation complexes (30S pre-IC or IC) exhibited greater IF1 stabilization by Tig than for Dem and Otc. Tig and Otc delayed 50S joining to 30S initiation complexes (30S ICs). Remarkably, the presence of Tig considerably slowed the progression to translation elongation and retained IF1 in the resulting 70S initiation complex (70S IC). Molecular modeling of Tetracyclines bound to the 30S pre-IC and 30S IC indicated that the antibiotics binding site topography fluctuates along the initiation pathway. Mainly, 30S complexes show potential contacts between Dem or Tig with IF1, providing a structural rationale for the enhanced affinity of the antibiotics in the presence of the factor. Altogether, our data indicate that Tetracyclines inhibit translation initiation by allosterically perturbing the IF3 layout on the 30S, retaining IF1 during 70S IC formation, and slowing the transition toward translation elongation. Thus, this study describes a new complementary mechanism by which Tetracyclines may inhibit bacterial protein synthesis.


2020 ◽  
Vol 48 (17) ◽  
pp. 9478-9490
Author(s):  
Juraj Szavits-Nossan ◽  
Luca Ciandrini

Abstract One of the main goals of ribosome profiling is to quantify the rate of protein synthesis at the level of translation. Here, we develop a method for inferring translation elongation kinetics from ribosome profiling data using recent advances in mathematical modelling of mRNA translation. Our method distinguishes between the elongation rate intrinsic to the ribosome’s stepping cycle and the actual elongation rate that takes into account ribosome interference. This distinction allows us to quantify the extent of ribosomal collisions along the transcript and identify individual codons where ribosomal collisions are likely. When examining ribosome profiling in yeast, we observe that translation initiation and elongation are close to their optima and traffic is minimized at the beginning of the transcript to favour ribosome recruitment. However, we find many individual sites of congestion along the mRNAs where the probability of ribosome interference can reach $50\%$. Our work provides new measures of translation initiation and elongation efficiencies, emphasizing the importance of rating these two stages of translation separately.


Science ◽  
2018 ◽  
Vol 361 (6403) ◽  
pp. 701-704 ◽  
Author(s):  
Jaechul Lim ◽  
Dongwan Kim ◽  
Young-suk Lee ◽  
Minju Ha ◽  
Mihye Lee ◽  
...  

RNA tails play integral roles in the regulation of messenger RNA (mRNA) translation and decay. Guanylation of the poly(A) tail was discovered recently, yet the enzymology and function remain obscure. Here we identify TENT4A (PAPD7) and TENT4B (PAPD5) as the enzymes responsible for mRNA guanylation. Purified TENT4 proteins generate a mixed poly(A) tail with intermittent non-adenosine residues, the most common of which is guanosine. A single guanosine residue is sufficient to impede the deadenylase CCR4-NOT complex, which trims the tail and exposes guanosine at the 3′ end. Consistently, depletion of TENT4A and TENT4B leads to a decrease in mRNA half-life and abundance in cells. Thus, TENT4A and TENT4B produce a mixed tail that shields mRNA from rapid deadenylation. Our study unveils the role of mixed tailing and expands the complexity of posttranscriptional gene regulation.


2020 ◽  
Vol 21 (19) ◽  
pp. 7368
Author(s):  
Maryam Gholizadeh ◽  
Sylwia Szelag-Pieniek ◽  
Mariola Post ◽  
Mateusz Kurzawski ◽  
Jesus Prieto ◽  
...  

Liver diseases are important causes of morbidity and mortality worldwide. The aim of this study was to identify differentially expressed microRNAs (miRNAs), target genes, and key pathways as innovative diagnostic biomarkers in liver patients with different pathology and functional state. We determined, using RT-qPCR, the expression of 472 miRNAs in 125 explanted livers from subjects with six different liver pathologies and from control livers. ANOVA was employed to obtain differentially expressed miRNAs (DEMs), and miRDB (MicroRNA target prediction database) was used to predict target genes. A miRNA–gene differential regulatory (MGDR) network was constructed for each condition. Key miRNAs were detected using topological analysis. Enrichment analysis for DEMs was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). We identified important DEMs common and specific to the different patient groups and disease progression stages. hsa-miR-1275 was universally downregulated regardless the disease etiology and stage, while hsa-let-7a*, hsa-miR-195, hsa-miR-374, and hsa-miR-378 were deregulated. The most significantly enriched pathways of target genes controlled by these miRNAs comprise p53 tumor suppressor protein (TP53)-regulated metabolic genes, and those involved in regulation of methyl-CpG-binding protein 2 (MECP2) expression, phosphatase and tensin homolog (PTEN) messenger RNA (mRNA) translation and copper homeostasis. Our findings show a novel panel of deregulated miRNAs in the liver tissue from patients with different liver pathologies. These miRNAs hold potential as biomarkers for diagnosis and staging of liver diseases.


Genes ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 19 ◽  
Author(s):  
Harmen Hawer ◽  
Alexander Hammermeister ◽  
Keerthiraju Ravichandran ◽  
Sebastian Glatt ◽  
Raffael Schaffrath ◽  
...  

Transfer RNA (tRNA) is subject to a multitude of posttranscriptional modifications which can profoundly impact its functionality as the essential adaptor molecule in messenger RNA (mRNA) translation. Therefore, dynamic regulation of tRNA modification in response to environmental changes can tune the efficiency of gene expression in concert with the emerging epitranscriptomic mRNA regulators. Several of the tRNA modifications are required to prevent human diseases and are particularly important for proper development and generation of neurons. In addition to the positive role of different tRNA modifications in prevention of neurodegeneration, certain cancer types upregulate tRNA modification genes to sustain cancer cell gene expression and metastasis. Multiple associations of defects in genes encoding subunits of the tRNA modifier complex Elongator with human disease highlight the importance of proper anticodon wobble uridine modifications (xm5U34) for health. Elongator functionality requires communication with accessory proteins and dynamic phosphorylation, providing regulatory control of its function. Here, we summarized recent insights into molecular functions of the complex and the role of Elongator dependent tRNA modification in human disease.


Sign in / Sign up

Export Citation Format

Share Document