scholarly journals Activation and Deactivation Kinetics of α2A- and α2C-Adrenergic Receptor-activated G Protein-activated Inwardly Rectifying K+Channel Currents

2001 ◽  
Vol 276 (50) ◽  
pp. 47512-47517 ◽  
Author(s):  
Moritz Bünemann ◽  
Markus M. Bücheler ◽  
Melanie Philipp ◽  
Martin J. Lohse ◽  
Lutz Hein

Although G protein-coupled receptor-mediated signaling is one of the best studied biological events, little is known about the kinetics of these processes in intact cells. Experiments with neurons from α2A-adrenergic receptor knockout mice suggested that the α2A-receptor subtype inhibits neurotransmitter release with higher speed and at higher action potential frequencies than the α2C-adrenergic receptor. Here we investigated whether these functional differences between presynaptic α2-adrenergic receptor subtypes are the result of distinct signal transduction kinetics of these two receptors and their coupling to G proteins. α2A- and α2C-receptors were stably expressed in HEK293 cells at moderate (∼2 pmol/mg) or high (17–24 pmol/mg) levels. Activation of G protein-activated inwardly rectifying K+(GIRK) channels was similar in extent and kinetics for α2A- and α2C-receptors at both expression levels. However, the two receptors differed significantly in their deactivation kinetics after removal of the agonist norepinephrine. α2C-Receptor-activated GIRK currents returned much more slowly to base line than did α2A-stimulated currents. This observation correlated with a higher affinity of norepinephrine at the murine α2C- than at the α2A-receptor subtype and may explain why α2C-adrenergic receptors are especially suited to control sympathetic neurotransmission at low action potential frequencies in contrast to the α2A-receptor subtype.

Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 52
Author(s):  
Eugenia V. Gurevich ◽  
Vsevolod V. Gurevich

Many receptors for neurotransmitters, such as dopamine, norepinephrine, acetylcholine, and neuropeptides, belong to the superfamily of G protein-coupled receptors (GPCRs). A general model posits that GPCRs undergo two-step homologous desensitization: the active receptor is phosphorylated by kinases of the G protein-coupled receptor kinase (GRK) family, whereupon arrestin proteins specifically bind active phosphorylated receptors, shutting down G protein-mediated signaling, facilitating receptor internalization, and initiating distinct signaling pathways via arrestin-based scaffolding. Here, we review the mechanisms of GRK-dependent regulation of neurotransmitter receptors, focusing on the diverse modes of GRK-mediated phosphorylation of receptor subtypes. The immediate signaling consequences of GRK-mediated receptor phosphorylation, such as arrestin recruitment, desensitization, and internalization/resensitization, are equally diverse, depending not only on the receptor subtype but also on phosphorylation by GRKs of select receptor residues. We discuss the signaling outcome as well as the biological and behavioral consequences of the GRK-dependent phosphorylation of neurotransmitter receptors where known.


2021 ◽  
pp. 247255522097979
Author(s):  
Kyung-Soon Lee ◽  
Edelmar Navaluna ◽  
Nicole M. Marsh ◽  
Eric M. Janezic ◽  
Chris Hague

We have developed a novel reporter assay that leverages SNAP-epitope tag/near-infrared (NIR) imaging technology to monitor G protein-coupled receptor (GPCR) degradation in human cell lines. N-terminal SNAP-tagged GPCRs were subcloned and expressed in human embryonic kidney (HEK) 293 cells and then subjected to 24 h of cycloheximide (CHX)-chase degradation assays to quantify receptor degradation half-lives ( t1/2) using LICOR NIR imaging–polyacrylamide gel electrophoresis (PAGE) analysis. Thus far, we have used this method to quantify t1/2 for all nine adrenergic (ADRA1A, ADRA1B, ADRA1D, ADRA2A, ADRA2B, ADRA2C, ADRB1, ADRB2, ADRB3), five somatostatin (SSTR1, SSTR2, SSTR3, SSTR4, SSTR5), four chemokine (CXCR1, CXCR2, CXCR3, CXCR5), and three 5-HT2 (5HT2A, 5HT2B, 5HT2C) receptor subtypes. SNAP-GPCR-CHX degradation t1/2 values ranged from 0.52 h (ADRA1D) to 5.5 h (SSTR3). On the contrary, both the SNAP-tag alone and SNAP-tagged and endogenous β-actin were resistant to degradation with CHX treatment. Treatment with the proteasome inhibitor bortezomib produced significant but variable increases in SNAP-GPCR protein expression levels, indicating that SNAP-GPCR degradation primarily occurs through the proteasome. Remarkably, endogenous β2-adrenergic receptor/ADRB2 dynamic mass redistribution functional responses to norepinephrine were significantly decreased following CHX treatment, with a time course equivalent to that observed with the SNAP-ADRB2 degradation assay. We subsequently adapted this assay into a 96-well glass-bottom plate format to facilitate high-throughput GPCR degradation screening. t1/2 values quantified for the α1-adrenergic receptor subtypes (ADRA1A, ADRA1B, ADR1D) using the 96-well-plate format correlated with t1/2 values quantified using NIR-PAGE imaging analysis. In summary, this novel assay permits precise quantitative analysis of GPCR degradation in human cells and can be readily adapted to quantify degradation for any membrane protein of interest.


1996 ◽  
Vol 7 (8) ◽  
pp. 1225-1233 ◽  
Author(s):  
P B Wedegaertner ◽  
H R Bourne ◽  
M von Zastrow

We have examined the subcellular distribution of alpha s, the alpha subunit of the heterotrimeric G protein Gs, by using immunofluorescence microscopy. In transiently transfected HEK293 cells, wild-type alpha s localizes to the plasma membrane. However, a mutationally activated alpha s (alpha sR201C) is diffusely distributed throughout the cytoplasm. Similarly, cholera toxin activation of alpha s causes it to redistribute from the plasma membrane to cytoplasm in stably transfected cells. In HEK293 cells stably transfected with alpha s and the beta 2-adrenergic receptor (beta-AR), stimulation of the beta-AR by the agonist isoproterenol also causes a translocation of alpha s from the plasma membrane to cytoplasm. Replacing the agonist with antagonist allows alpha s to return to the plasma membrane, demonstrating the reversibility of alpha s translocation. Receptor-activated alpha s does not colocalize with internalized beta-AR at endosomes. Incubation of cells in hypertonic sucrose to inhibit clathrin-coated pit-mediated endocytosis of agonist-activated beta-AR failed to block agonist-stimulated redistribution of alpha s. These findings demonstrate that activated alpha s reversibly undergoes a translocation from the plasma membrane to cytoplasm and begin to address the relationship between regulated trafficking of a seven-transmembrane receptor and its cognate G protein.


2021 ◽  
Vol 99 (8) ◽  
Author(s):  
Jinhee H Hwang ◽  
Michael E Spurlock ◽  
John C Kube ◽  
Xiang Z Li ◽  
Stephen B Smith

Abstract Chinese hamster ovary cell constructs expressing either the β 1-, β 2- or β 3-adrenergic receptor (AR) were used to determine whether a novel β-AR modulator, lubabegron fumarate (LUB; Experior, Elanco Animal Health) might exert greater potency for a specific β-AR subtype. EC50 values calculated based on cAMP accumulation in dose response curves indicate that LUB is highly selective for the β 3-AR subtype, with an EC50 of 6 × 10–9 M, with no detectible agonistic activity at the β 2-AR. We hypothesized that the accumulation of lipolytic markers would reflect the agonist activity at each of the β-receptor subtypes of the specific ligand; additionally, there would be differences in receptor subtype expression in subcutaneous (s.c.) and intrmuscular (i.m.) adipose tissues. Total RNA was extracted from adipose tissue samples and relative mRNA levels for β 1-, β2-, and β 3-AR were measured using real-time quantitative polymerase chain reaction. Fresh s.c. and i.m. adipose tissue explants were incubated with isoproterenol hydrochloride (ISO; β-AR pan-agonist), dobutamine hydrochloride (DOB; specific β 1-AA), salbutamol sulfate (SAL; specific β 2-AA), ractopamine hydrochloride (RAC), zilpaterol hydrochloride (ZIL), BRL-37344 (specific β 3-agonist), or LUB for 30 min following preincubation with theophylline (inhibitor of phosphodiesterase). Relative mRNA amounts for β 1-, β 2-, and β 3-AR were greater (P < 0.05) in s.c. than in i.m. adipose tissue. The most abundant β-AR mRNA in both adipose tissues was the β 2-AR (P < 0.05), with the β 1- and β 3-AR subtypes being minimally expressed in i.m. adipose tissue. ISO, RH, and ZH stimulated the release of glycerol and nonesterified fatty acid (NEFA) from s.c. adipose tissue, but these β-AR ligands did not alter concentrations of these lipolytic markers in i.m. adipose tissue. LUB did not affect glycerol or NEFA concentrations in s.c. or i.m. adipose tissue, but attenuated (P < 0.05) the accumulation of cAMP mediated by the β 1- and β 2-AR ligands DOB and SAL in s.c. adipose tissue. Collectively, these data indicate that bovine i.m. adipose tissue is less responsive than s.c. adipose tissue to β-adrenergic ligands, especially those that are agonists at the β 1- and β3-receptor subtypes. The minimal mRNA expression of the β 1- and β 3 subtypes in i.m. adipose tissue likely limits the response potential to agonists for these β-AR subtypes.


1999 ◽  
Vol 344 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Jane E. SWATTON ◽  
Stephen A. MORRIS ◽  
Thomas J. A. CARDY ◽  
Colin W. TAYLOR

There are three subtypes of mammalian Ins(1,4,5)P3 (InsP3) receptor, each of which forms an intracellular Ca2+ channel. Biphasic regulation of InsP3 receptors by cytosolic Ca2+ is well documented in cells expressing predominantly type 1 or type 2 InsP3 receptors and might contribute to the regenerative recruitment of Ca2+ release events and to limiting their duration in intact cells. The properties of type 3 receptors are less clear. Bilayer recording from InsP3 receptors of RIN-5F cells, cells in which the InsP3 receptors are likely to be largely type 3, recently suggested that the receptors are not inhibited by Ca2+ [Hagar, Burgstahler, Nathanson and Ehrlich (1998) Nature (London) 296, 81-84]. By using antipeptide antisera that either selectively recognized each InsP3 receptor subtype or interacted equally well with all subtypes, together with membranes from Spodoptera frugiperda (Sf9) cells expressing only single receptor subtypes to calibrate the immunoblotting, we quantified the relative levels of expression of type 1 (17%) and type 3 (77%) InsP3 receptors in RINm5F cells. In unidirectional 45Ca2+ efflux experiments from permeabilized RINm5F cells, submaximal concentrations of InsP3 released only a fraction of the InsP3-sensitive Ca2+ stores, indicating that responses to InsP3 are quantal. Increasing the cytosolic free [Ca2+] ([Ca2+]i) from approx. 4 to 186 nM increased the sensitivity of the Ca2+ stores to InsP3: the EC50 decreased from 281±15 to 82±2 nM. Further increases in [Ca2+]i massively decreased the sensitivity of the stores to InsP3, by almost 10-fold when [Ca2+]i was 2.4 μM, and by more than 3000-fold when it was 100 μM. The inhibition caused by 100 μM Ca2+ was fully reversed within 60 s of the restoration of [Ca2+]i to 186 nM. The effect of submaximal InsP3 concentrations on Ca2+ mobilization from permeabilized RINm5F cells is therefore biphasically regulated by cytosolic Ca2+. We conclude that type 3 InsP3 receptors of RINm5F cells mediate quantal Ca2+ release and they are biphasically regulated by cytosolic Ca2+, either because a single type 1 subunit within the tetrameric receptor confers the Ca2+ inhibition or because the type 3 subtype is itself directly inhibited by Ca2+.


2004 ◽  
Vol 101 (4) ◽  
pp. 641-647 ◽  
Author(s):  
James W. Leiphart ◽  
Cynthia V. Dills ◽  
Robert M. Levy

Object. Intrathecally administered α2-adrenergic receptor subtype—specific antagonists were used to determine which α2-adrenergic receptor subtype mediates the analgesic effect of intrathecally administered tizanidine in a chronic constriction injury (CCI) rat model of neuropathic pain. Methods. Seven days after CCI and intrathecal catheter surgeries had been performed in Sprague—Dawley rats, baseline neuropathic pain tests including cold-floor ambulation and paw pinch were performed. Either the dimethyl sulfoxide vehicle (seven rats) or one of the antagonists—5, 23, or 46 µg yohimbine (22 rats); 5, 25, 50, or 100 µg prazosin (25 rats); or 5, 45, or 90 µg WB4101 (11 rats)—were intrathecally administered to the animals, followed in 30 minutes by 50 µg intrathecally administered tizanidine. The neuropathic pain tests were repeated 30 minutes later. The resulting profile showed a descending order of antagonist efficacy for yohimbine, prazosin, and WB4101 for the cold-floor ambulation test and for the paw-pinch test of the affected paw. As expected given tizanidine's lack of analgesic effect on the contralateral, normal paw, there were no effects of antagonists on contralateral paw responses. The results of the paw-pinch test on the affected side were compared with binding data cited in the existing literature for the three different α2-adrenergic receptor subtypes (α2A, α2B, and α2C) with yohimbine, prazosin, and WB4101. The antagonist response profile for the paw-pinch test of the affected paw most closely approximated the α2B receptor binding profile. Conclusions. The antagonist profile from the current study is most consistent with the theory that the α2B-adrenergic receptor subtype mediates the analgesic effect of intrathecally administered tizanidine on CCI-associated neuropathic pain.


1989 ◽  
Vol 260 (1) ◽  
pp. 53-59 ◽  
Author(s):  
M T Nakada ◽  
K M Haskell ◽  
D J Ecker ◽  
J M Stadel ◽  
S T Crooke

The beta 2-adrenergic receptor from mouse 3T3-L1 cells is up-regulated through genetic mechanisms by glucocorticoids and butyrate. To study the genetic regulation of these receptors, we sequenced a 5 kb region of genomic DNA from 3T3-L1 cells, containing the beta-adrenergic receptor gene and approx. 1.5 kb of both 5′ and 3′ flanking sequences. The sequence contained one copy of an 8 bp consensus sequence which can confer phorbol ester-responsiveness to genes. Phorbol esters attenuated the up-regulation of beta 2-adrenergic receptors by glucocorticoids but not by butyrate. This effect was probably due to a phorbol ester-induced decrease in glucocorticoid receptor number. Using methylation-sensitive restriction enzymes, we examined the methylation of a CG-rich region occurring 5′ to the gene and did not detect any changes in methylation of this region upon dexamethasone or butyrate treatment. A total of 16 putative glucocorticoid response elements were found which may mediate the glucocorticoid-induced increase in beta 2-adrenergic receptors. A comparison of the regulatory sequences of the two beta-adrenergic receptor subtypes from human and mouse confirms the observed physiological controls of receptor subtype expression and offers an explanation as to why the subtypes differ in genetic regulation.


2000 ◽  
Vol 84 (5) ◽  
pp. 2417-2425 ◽  
Author(s):  
Debra E. Artim ◽  
Stephen D. Meriney

We have studied voltage-dependent inhibition of N-type calcium currents to investigate the effects of G-protein modulation-induced alterations in channel gating on action potential-evoked calcium current. In isolated chick ciliary ganglion neurons, GTPγS produced voltage-dependent inhibition that exhibited slowed activation kinetics and was partially relieved by a conditioning prepulse. Using step depolarizations to evoke calcium current, we measured tail current amplitudes on abrupt repolarization to estimate the time course of calcium channel activation from 1 to 30 ms. GTPγS prolonged significantly channel activation, consistent with the presence of kinetic slowing in the modulated whole cell current evoked by 100-ms steps. Since kinetic slowing is caused by an altered voltage dependence of channel activation (such that channels require stronger or longer duration depolarization to open), we asked if GTPγS-induced modulation would alter the time course of calcium channel activation during an action potential. Using an action potential waveform as a voltage command to evoke calcium current, we abruptly repolarized to −80 mV at various time points during the repolarization phase of the action potential. The resulting tail current was used to estimate the relative number of calcium channels that were open. Using action potential waveforms of either 2.2- or 6-ms duration at half-amplitude, there were no differences in the time course of calcium channel activation, or in the percent activation at any time point tested during the repolarization, when control and modulated currents were compared. It is also possible that modulated channels might open briefly and that these reluctant openings would effect the time course of action potential-evoked calcium current. However, when control and modulated currents were scaled to the same peak amplitude and superimposed, there was no difference in the kinetics of the two currents. Thus voltage-dependent inhibition did not alter the kinetics of action potential-evoked current. These results suggest that G-protein-modulated channels do not contribute significantly to calcium current evoked by a single action potential.


1990 ◽  
Vol 124 (3) ◽  
pp. 433-441 ◽  
Author(s):  
H. Shimura ◽  
T. Endo ◽  
G. Tsujimoto ◽  
K. Watanabe ◽  
K. Hashimoto ◽  
...  

ABSTRACT We have characterized α1-adrenergic receptor subtypes in functional rat thyroid cells, FRTL, with relation to iodide efflux, and have also examined the effect of TSH on α1 receptor subtypes. FRTL cells grown in a medium containing 5 mU TSH/ml (6H cells) had five times the number of α1 receptors of those maintained in TSH-free medium (5H cells) (11·2 fmol/106 cells compared with 2·0 fmol/106 cells). Pretreatment with chlorethylclonidine (CEC; 10 μmol/l), which inactivates only α1b receptors, caused 98·8% and 97·0% decreases in the density of specific [3H]prazosin-binding sites in 5H and 6H cells respectively. LIGAND computer program analysis of the displacement curves for 2-(2,6-dimethoxyphenoxyethyl)-aminomethyl-1,4 benzodioxane (WB4101) showed that FRTL cells contained mostly low-affinity WB4101 sites. Using the phenoxybenzamine inactivation method, we found a linear relationship between α1 receptor density and the cytosolic free Ca2+ concentration response in FRTL cells. Pre-exposure of intact FRTL cells to CEC caused a 98·7% decrease in noradrenaline-stimulated maximal increase in cytosolic free Ca2+. Also, CEC and 3,4,5-trimethoxybenzoic acid 8-(diethylamino) octyl ester (TMB-8), but not nicardipine, inhibited noradrenaline-stimulated iodine efflux. The results suggest that FRTL cells contain mostly the α1b-adrenergic receptor subtype; that the α1b receptors mediate cytosolic free Ca2+ and iodide efflux responses, and that TSH enhances these responses by increasing the α1b receptor density without affecting the post-receptor mechanism. Journal of Endocrinology (1990) 124, 433–441


Sign in / Sign up

Export Citation Format

Share Document