scholarly journals Ubiquitin-specific Protease 7 Is a Regulator of Ubiquitin-conjugating Enzyme UbE2E1

2013 ◽  
Vol 288 (23) ◽  
pp. 16975-16985 ◽  
Author(s):  
Feroz Sarkari ◽  
Keith Wheaton ◽  
Anthony La Delfa ◽  
Majda Mohamed ◽  
Faryal Shaikh ◽  
...  

Ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme found in all eukaryotes that catalyzes the removal of ubiquitin from specific target proteins. Here, we report that UbE2E1, an E2 ubiquitin conjugation enzyme with a unique N-terminal extension, is a novel USP7-interacting protein. USP7 forms a complex with UbE2E1 in vitro and in vivo through the ASTS USP7 binding motif within its N-terminal extension in an identical manner with other known USP7 binding proteins. We show that USP7 attenuates UbE2E1-mediated ubiquitination, an effect that requires the N-terminal ASTS sequence of UbE2E1 as well as the catalytic activity of USP7. Additionally, USP7 is critical in maintaining the steady state levels of UbE2E1 in cells. This study reveals a new cellular mechanism that couples the opposing activities of the ubiquitination machinery and a deubiquitinating enzyme to maintain and modulate the dynamic balance of the ubiquitin-proteasome system.

2015 ◽  
Vol 112 (12) ◽  
pp. 3734-3739 ◽  
Author(s):  
Xiao-Xin Sun ◽  
Xia He ◽  
Li Yin ◽  
Masayuki Komada ◽  
Rosalie C. Sears ◽  
...  

c-Myc protein stability and activity are tightly regulated by the ubiquitin-proteasome system. Aberrant stabilization of c-Myc contributes to many human cancers. c-Myc is ubiquitinated by SCFFbw7 (a SKP1-cullin-1-F-box complex that contains the F-box and WD repeat domain-containing 7, Fbw7, as the F-box protein) and several other ubiquitin ligases, whereas it is deubiquitinated and stabilized by ubiquitin-specific protease (USP) 28. The bulk of c-Myc degradation appears to occur in the nucleolus. However, whether c-Myc is regulated by deubiquitination in the nucleolus is not known. Here, we report that the nucleolar deubiquitinating enzyme USP36 is a novel c-Myc deubiquitinase. USP36 interacts with and deubiquitinates c-Myc in cells and in vitro, leading to the stabilization of c-Myc. This USP36 regulation of c-Myc occurs in the nucleolus. Interestingly, USP36 interacts with the nucleolar Fbw7γ but not the nucleoplasmic Fbw7α. However, it abolished c-Myc degradation mediated both by Fbw7γ and by Fbw7α. Consistently, knockdown of USP36 reduces the levels of c-Myc and suppresses cell proliferation. We further show that USP36 itself is a c-Myc target gene, suggesting that USP36 and c-Myc form a positive feedback regulatory loop. High expression levels of USP36 are found in a subset of human breast and lung cancers. Altogether, these results identified USP36 as a crucial and bono fide deubiquitinating enzyme controlling c-Myc’s nucleolar degradation pathway.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Yu Tian ◽  
Bo Tang ◽  
Chengye Wang ◽  
Yan Wang ◽  
Jiakai Mao ◽  
...  

AbstractOncogenic ubiquitin-specific protease 22 (USP22) is implicated in a variety of tumours; however, evidence of its role and underlying molecular mechanisms in cholangiocarcinoma (CCA) development remains unknown. We collected paired tumour and adjacent non-tumour tissues from 57 intrahepatic CCA (iCCA) patients and evaluated levels of the USP22 gene and protein by qPCR and immunohistochemistry. Both the mRNA and protein were significantly upregulated, correlated with the malignant invasion and worse OS of iCCA. In cell cultures, USP22 overexpression increased CCA cell proliferation and mobility, and induced epithelial-to-mesenchymal transition (EMT). Upon an interaction, USP22 deubiquitinated and stabilized sirtuin-1 (SIRT1), in conjunction with Akt/ERK activation. In implantation xenografts, USP22 overexpression stimulated tumour growth and metastasis to the lungs of mice. Conversely, the knockdown by USP22 shRNA attenuated the tumour growth and invasiveness in vitro and in vivo. Furthermore, SIRT1 overexpression reversed the USP22 functional deficiency, while the knockdown acetylated TGF-β-activated kinase 1 (TAK1) and Akt. Our present study defines USP22 as a poor prognostic predictor in iCCA that cooperates with SIRT1 and facilitates tumour development.


Author(s):  
Bing Li ◽  
Zhi-Peng Qi ◽  
Dong-Li He ◽  
Zhang-Han Chen ◽  
Jing-Yi Liu ◽  
...  

Abstract Background NOD-like receptors affect multiple stages of cancer progression in many malignancies. NACHT, LRR, and PYD domain-containing protein 7 (NLRP7) is a member of the NOD-like receptor family, although its role in tumorigenesis remains unclear. By analyzing clinical samples, we found that NLRP7 protein levels were upregulated in colorectal cancer (CRC). We proposed the hypothesis that a high level of NLRP7 in CRC may promote tumor progression. Here, we further investigated the role of NLRP7 in CRC and the underlying mechanism. Methods NLRP7 expression in human CRC and adjacent non-tumorous tissues was examined by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry. The effect of NLRP7 in CRC progression was investigated in vitro and in vivo. Proteins interacting with NLRP7 were identified by immunoprecipitation and mass spectrometry analysis while immunofluorescence staining revealed the cellular location of the proteins. Cellular ubiquitination and protein stability assays were applied to demonstrate the ubiquitination effect on NLRP7. Cloning and mutagenesis were used to identify a lysine acceptor site that mediates NLRP7 ubiquitination. Cytokines/chemokines affected by NLRP7 were identified by RNA sequencing, qRT-PCR, and enzyme-linked immunosorbent assay. Macrophage phenotypes were determined using qRT-PCR, flow cytometry, and immunohistochemistry. Results NLRP7 protein levels, but not mRNA levels, were upregulated in CRC, and increased NLRP7 protein expression was associated with poor survival. NLRP7 promoted tumor cell proliferation and metastasis in vivo and in vitro and interacted with ubiquitin-specific protease 10, which catalyzed its deubiquitination in CRC cells. NLRP7 stability and protein levels in CRC cells were modulated by ubiquitination and deubiquitination, and NLRP7 was involved in the ubiquitin-specific protease 10 promotion of tumor progression and metastasis in CRC. K379 was an important lysine acceptor site that mediates NLRP7 ubiquitination in CRC cells. In CRC, NLRP7 promoted the polarization of pro-tumor M2-like macrophages by inducing the secretion of C-C motif chemokine ligand 2. Furthermore, NLRP7 promoted NF-κB nuclear translocation and activation of C-C motif chemokine ligand 2 transcription. Conclusions We showed that NLRP7 promotes CRC progression and revealed an as-yet-unidentified mechanism by which NLRP7 induces the polarization of pro-tumor M2-like macrophages. These results suggest that NLRP7 could serve as a biomarker and novel therapeutic target for the treatment of CRC.


2010 ◽  
Vol 431 (3) ◽  
pp. 391-402 ◽  
Author(s):  
Boon Shang Chew ◽  
Wee Leng Siew ◽  
Benjamin Xiao ◽  
Norbert Lehming

Tbp1, the TATA-binding protein, is essential for transcriptional activation, and Gal4 and Gcn4 are unable to fully activate transcription in a Saccharomyces cerevisiae TBP1E86D mutant strain. In the present study we have shown that the Tbp1E186D mutant protein is proteolytically instable, and we have isolated intragenic and extragenic suppressors of the transcription defects of the TBP1E186D mutant strain. The TBP1R6S mutation stabilizes the Tbp1E186D mutant protein and suppresses the defects of the TBP1E186D mutant strain. Furthermore, we found that the overexpression of the de-ubiquitinating enzyme Ubp3 (ubiquitin-specific protease 3) also stabilizes the Tbp1E186D mutant protein and suppresses of the defects of the TBP1E186D mutant strain. Importantly, the deletion of UBP3 and its cofactor BRE5 lead to increased degradation of wild-type Tbp1 protein and to defects in transcriptional activation by Gal4 and Gcn4. Purified GST (glutathione transferase)–Ubp3 reversed Tbp1 ubiquitination, and the deletion of UBP3 lead to the accumulation of poly-ubiquitinated species of Tbp1 in a proteaseome-deficient genetic background, demonstrating that Ubp3 reverses ubiquitination of Tbp1 in vitro and in vivo. Chromatin immunoprecipitation showed that Ubp3 was recruited to the GAL1 and HIS3 promoters upon the induction of the respective gene, indicating that protection of promoter-bound Tbp1 by Ubp3 is required for transcriptional activation.


2018 ◽  
Vol 215 (11) ◽  
pp. 2850-2867 ◽  
Author(s):  
Siyuan Chen ◽  
Fenglin Yun ◽  
Yikun Yao ◽  
Mengtao Cao ◽  
Yifan Zhang ◽  
...  

Th2 immune response is critical for allergic asthma pathogenesis. Molecular mechanisms for regulating Th2 immunity are still not well understood. Here we report that the ubiquitin-specific protease USP38 is crucial for Th2-mediated allergic asthma. TCR stimulation up-regulated the USP38 level, and USP38 in turn mediated the protein stabilization of JunB, a transcription factor specific for Th2 development. Consequently, USP38 was specifically required for TCR-induced production of Th2 cytokines and Th2 development both in vitro and in vivo, and USP38-deficient mice were resistant to asthma pathogenesis induced by OVA or HDM. Mechanistically, USP38 directly associated with JunB, deubiquitinated Lys-48–linked poly-ubiquitination of JunB, and consequently blocked TCR-induced JunB turnover. USP38 represents the first identified deubiquitinase specifically for Th2 immunity and the associated asthma.


2019 ◽  
Vol 20 (21) ◽  
pp. 5300 ◽  
Author(s):  
Kyung Ho Han ◽  
Minseok Kwak ◽  
Tae Hyeong Lee ◽  
Min-soo Park ◽  
In-ho Jeong ◽  
...  

The ubiquitin–proteasome system is an essential regulator of several cellular pathways involving oncogenes. Deubiquitination negatively regulates target proteins or substrates linked to both hereditary and sporadic forms of cancer. The deubiquitinating enzyme ubiquitin-specific protease 14 (USP14) is associated with proteasomes where it trims the ubiquitin chain on the substrate. Here, we found that USP14 is highly expressed in patients with lung cancer. We also demonstrated that USP14 inhibitors (IU1-47 and siRNA-USP14) significantly decreased cell proliferation, migration, and invasion in lung cancer. Remarkably, we found that USP14 negatively regulates lung tumorigenesis not only through apoptosis but also through the autophagy pathway. Our findings suggest that USP14 plays a crucial role in lung tumorigenesis and that USP14 inhibitors are potent drugs in lung cancer treatment.


2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Jieling Zheng ◽  
Baiyao Wang ◽  
Rong Zheng ◽  
Jian Zhang ◽  
Chunyue Huang ◽  
...  

Abstract Radiotherapy is one of the standard treatments for glioma patients; however, its clinical efficacy is limited by radioresistance. We identified a mechanism of such resistance mediated by linc-RA1 (radioresistance-associated long intergenic noncoding RNA 1). Linc-RA1 was upregulated in radioresistant glioma cells and glioma tissue samples, compared with radiosensitive cells and nontumor tissues. Linc-RA1 was associated with inferior overall survival and advanced clinical stage of glioma. Linc-RA1 promoted glioma radioresistance in vitro and in vivo. Mechanistically, linc-RA1 stabilized the level of H2B K120 monoubiquitination (H2Bub1) by combining with H2B and inhibiting the interaction between H2Bub1 and ubiquitin-specific protease 44 (USP44), which inhibited autophagy, thus contributing to glioma radioresistance. These results reveal that linc-RA1-mediated autophagy is a key mechanism of radioresistance and is an actionable target for improving radiotherapy efficacy in patients with glioma.


2008 ◽  
Vol 411 (2) ◽  
pp. 249-260 ◽  
Author(s):  
Abdallah K. Al-Hakim ◽  
Anna Zagorska ◽  
Louise Chapman ◽  
Maria Deak ◽  
Mark Peggie ◽  
...  

AMPK (AMP-activated protein kinase)-related kinases regulate cell polarity as well as proliferation and are activated by the LKB1-tumour suppressor kinase. In the present study we demonstrate that the AMPK-related kinases, NUAK1 (AMPK-related kinase 5) and MARK4 (microtubule-affinity-regulating kinase 4), are polyubiquitinated in vivo and interact with the deubiquitinating enzyme USP9X (ubiquitin specific protease-9). Knockdown of USP9X increased polyubiquitination of NUAK1 and MARK4, whereas overexpression of USP9X inhibited ubiquitination. USP9X, catalysed the removal of polyubiquitin chains from wild-type NUAK1, but not from a non-USP9X-binding mutant. Topological analysis revealed that ubiquitin monomers attached to NUAK1 and MARK4 are linked by Lys29 and/or Lys33 rather than the more common Lys48/Lys63. We find that AMPK and other AMPK-related kinases are also polyubiquitinated in cells. We identified non-USP9X-binding mutants of NUAK1 and MARK4 and find that these are hyper-ubiquitinated and not phosphorylated at their T-loop residue targeted by LKB1 when expressed in cells, suggesting that polyubiquitination may inhibit these enzymes. The results of the present study demonstrate that NUAK1 and MARK4 are substrates of USP9X and provide the first evidence that AMPK family kinases are regulated by unusual Lys29/Lys33-linked polyubiquitin chains.


2012 ◽  
Vol 441 (3) ◽  
pp. 979-987 ◽  
Author(s):  
Ning Xiao ◽  
Hui Li ◽  
Jian Luo ◽  
Rui Wang ◽  
Haiquan Chen ◽  
...  

TRAF [TNF (tumour necrosis factor)-receptor-associated factor] 2 and 6 are essential adaptor proteins for the NF-κB (nuclear factor κB) signalling pathway, which play important roles in inflammation and immune response. Polyubiquitination of TRAF2 and TRAF6 is critical to their activities and functions in TNFα- and IL (interleukin)-1β-induced NF-κB activation. However, the regulation of TRAF2 and TRAF6 by deubiquitination remains incompletely understood. In the present study, we identified USP (ubiquitin-specific protease) 4 as a novel deubiquitinase targeting TRAF2 and TRAF6 for deubiquitination. We found that USP4 specifically interacts with TRAF2 and TRAF6, but not TRAF3. Moreover, USP4 associates with TRAF6 both in vitro and in vivo, independent of its deubiquitinase activity. The USP domain is responsible for USP4 to interact with TRAF6. Ectopic expression of USP4 inhibits the TRAF2- and TRAF6-stimulated NF-κB reporter gene and negatively regulates the TNFα-induced IκBα (inhibitor of NF-κBα) degradation and NF-κB activation. Knockdown of USP4 significantly increased TNFα-induced cytokine expression. Furthermore, we found that USP4 deubiquitinates both TRAF2 and TRAF6 in vivo and in vitro in a deubiquitinase activity-dependent manner. Importantly, the results of the present study showed that USP4 is a negative regulator of TNFα- and IL-1β-induced cancer cell migration. Taken together, the present study provides a novel insight into the regulation of the NF-κB signalling pathway and uncovers a previously unknown function of USP4 in cancer.


2005 ◽  
Vol 280 (43) ◽  
pp. 35967-35973 ◽  
Author(s):  
Chuanlu Shen ◽  
Ying Ye ◽  
Sarah E. Robertson ◽  
Alan W. Lau ◽  
Don-On D. Mak ◽  
...  

The TRE17 (USP6/TRE-2) oncogene induces tumorigenesis in both humans and mice. However, little is known regarding its regulation or mechanism of transformation. TRE17 encodes a TBC (Tre-2/Bub2/Cdc16)/Rab GTPase-activating protein homology domain at its N terminus and a ubiquitin-specific protease at its C terminus. In the current study, we identified the ubiquitous calcium (Ca2+)-binding protein calmodulin (CaM) as a novel binding partner for TRE17. CaM bound directly to TRE17 in a Ca2+-dependent manner both in vitro and in vivo. The CaM-binding site was mapped to two hydrophobic motifs near the C terminus of the TBC domain. Point mutations within these motifs significantly reduced the interaction of TRE17 with CaM. We further found that TRE17 is monoubiquitinated and promotes its own deubiquitination in vivo. CaM binding-deficient mutants of TRE17 exhibited significantly reduced monoubiquitination, suggesting that binding of Ca2+/CaM to TRE17 promotes this modification. Consistent with this notion, treatment of cells with the CaM inhibitor W7 reduced levels of TRE17 monoubiquitination. Interestingly, the calcium ionophore A23187 induced accumulation of a polyubiquitinated TRE17 species. The effect of A23187 was attenuated in CaM binding-deficient mutants of TRE17. Taken together, these studies indicate a role for Ca2+/CaM in regulating ubiquitination through direct interaction with TRE17.


Sign in / Sign up

Export Citation Format

Share Document