scholarly journals Genome-Wide Pattern of TCF7L2/TCF4 Chromatin Occupancy in Colorectal Cancer Cells

2008 ◽  
Vol 28 (8) ◽  
pp. 2732-2744 ◽  
Author(s):  
Pantelis Hatzis ◽  
Laurens G. van der Flier ◽  
Marc A. van Driel ◽  
Victor Guryev ◽  
Fiona Nielsen ◽  
...  

ABSTRACT Wnt signaling activates gene expression through the induced formation of complexes between DNA-binding T-cell factors (TCFs) and the transcriptional coactivator β-catenin. In colorectal cancer, activating Wnt pathway mutations transform epithelial cells through the inappropriate activation of a TCF7L2/TCF4 target gene program. Through a DNA array-based genome-wide analysis of TCF4 chromatin occupancy, we have identified 6,868 high-confidence TCF4-binding sites in the LS174T colorectal cancer cell line. Most TCF4-binding sites are located at large distances from transcription start sites, while target genes are frequently “decorated” by multiple binding sites. Motif discovery algorithms define the in vivo-occupied TCF4-binding site as evolutionarily conserved A-C/G-A/T-T-C-A-A-A-G motifs. The TCF4-binding regions significantly correlate with Wnt-responsive gene expression profiles derived from primary human adenomas and often behave as β-catenin/TCF4-dependent enhancers in transient reporter assays.

2013 ◽  
Vol 289 (3) ◽  
pp. 1313-1328 ◽  
Author(s):  
Preeti Ramadoss ◽  
Brian J. Abraham ◽  
Linus Tsai ◽  
Yiming Zhou ◽  
Ricardo H. Costa-e-Sousa ◽  
...  

Triiodothyronine (T3) regulates key metabolic processes in the liver through the thyroid hormone receptor, TRβ1. However, the number of known target genes directly regulated by TRβ1 is limited, and the mechanisms by which positive and especially negative transcriptional regulation occur are not well understood. To characterize the TRβ1 cistrome in vivo, we expressed a biotinylated TRβ1 in hypo- and hyperthyroid mouse livers, used ChIP-seq to identify genomic TRβ1 targets, and correlated these data with gene expression changes. As with other nuclear receptors, the majority of TRβ1 binding sites were not in proximal promoters but in the gene body of known genes. Remarkably, T3 can dictate changes in TRβ1 binding, with strong correlation to T3-induced gene expression changes, suggesting that differential TRβ1 binding regulates transcriptional outcome. Additionally, DR-4 and DR-0 motifs were significantly enriched at binding sites where T3 induced an increase or decrease in TRβ1 binding, respectively, leading to either positive or negative regulation by T3. Taken together, the results of this study provide new insights into the mechanisms of transcriptional regulation by TRβ1 in vivo.


2010 ◽  
Vol 9 (4) ◽  
pp. 514-531 ◽  
Author(s):  
Barbara Heise ◽  
Julia van der Felden ◽  
Sandra Kern ◽  
Mario Malcher ◽  
Stefan Brückner ◽  
...  

ABSTRACT In Saccharomyces cerevisiae, the TEA transcription factor Tec1 is known to regulate target genes together with a second transcription factor, Ste12. Tec1-Ste12 complexes can activate transcription through Tec1 binding sites (TCSs), which can be further combined with Ste12 binding sites (PREs) for cooperative DNA binding. However, previous studies have hinted that Tec1 might regulate transcription also without Ste12. Here, we show that in vivo, physiological amounts of Tec1 are sufficient to stimulate TCS-mediated gene expression and transcription of the FLO11 gene in the absence of Ste12. In vitro, Tec1 is able to bind TCS elements with high affinity and specificity without Ste12. Furthermore, Tec1 contains a C-terminal transcriptional activation domain that confers Ste12-independent activation of TCS-regulated gene expression. On a genome-wide scale, we identified 302 Tec1 target genes that constitute two distinct classes. A first class of 254 genes is regulated by Tec1 in a Ste12-dependent manner and is enriched for genes that are bound by Tec1 and Ste12 in vivo. In contrast, a second class of 48 genes can be regulated by Tec1 independently of Ste12 and is enriched for genes that are bound by the stress transcription factors Yap6, Nrg1, Cin5, Skn7, Hsf1, and Msn4. Finally, we find that combinatorial control by Tec1-Ste12 complexes stabilizes Tec1 against degradation. Our study suggests that Tec1 is able to regulate TCS-mediated gene expression by Ste12-dependent and Ste12-independent mechanisms that enable promoter-specific transcriptional control.


Drug Research ◽  
2018 ◽  
Vol 68 (06) ◽  
pp. 335-343 ◽  
Author(s):  
Raana Bagheri ◽  
Zohreh Sanaat ◽  
Nosratollah Zarghami

Abstract Background Telomerase is known as a global therapeutic target in cancer cells due to its main role in tumorigenesis. Nowadays, it is proposed new treatment methods based on molecular target therapy by bioactive substances such as curcumin and chrysin with fewer side effects than other chemical drugs. But due to their low aqueous solubility and high clearance in the bloodstream it can be used of nanoparticles to increase their half-life and biocompatibility of them. Therefore, the goal of this study was to evaluate the effect of Chrysin-Curcumin on the expression of telomerase gene in SW480 colorectal cancer cell line. Material and method PLGA-PEG nanoparticles synthesized and were confirmed using by the scanning electron microscope (SEM) and FTIR Spectroscopy. After treatment of SW480 cells by curcumin and chrysin loaded nanoparticles, their toxicity to cancer cells, was evaluated by MTT. Then, the inhibition of hTERT gene expression was measured using qRT-PCR method. Result The results of MTT test showed nanocapsulated curcumin and chrysin compared with free forms of these compounds have high synergistic effect on sw480 cells. Also, real time-PCR showed significant decrease in hTERT gene expression in SW480 cells that treated with nano-curcumin and nano-chrysin compare to untreated cells. Conclusion Nano-encapsulation of curcumin and chrysin enhanced delivery of these compounds to SW480 colorectal cancer cells and therefore it can be conclude that PLGA-PEG nanoparticles promote anticancer effects of curcumin-chrysin by increasing bioavailability and the solubility of these drugs.


2020 ◽  
Author(s):  
Maud Fagny ◽  
Marieke Lydia Kuijjer ◽  
Maike Stam ◽  
Johann Joets ◽  
Olivier Turc ◽  
...  

AbstractEnhancers are important regulators of gene expression during numerous crucial processes including tissue differentiation across development. In plants, their recent molecular characterization revealed their capacity to activate the expression of several target genes through the binding of transcription factors. Nevertheless, identifying these target genes at a genome-wide level remains a challenge, in particular in species with large genomes, where enhancers and target genes can be hundreds of kilobases away. Therefore, the contribution of enhancers to regulatory network is still poorly understood in plants. In this study, we investigate the enhancer-driven regulatory network of two maize tissues at different stages: leaves at seedling stage and husks (bracts) at flowering. Using a systems biology approach, we integrate genomic, epigenomic and transcriptomic data to model the regulatory relationship between transcription factors and their potential target genes. We identify regulatory modules specific to husk and V2-IST, and show that they are involved in distinct functions related to the biology of each tissue. We evidence enhancers exhibiting binding sites for two distinct transcription factor families (DOF and AP2/ERF) that drive the tissue-specificity of gene expression in seedling immature leaf and husk. Analysis of the corresponding enhancer sequences reveals that two different transposable element families (TIR transposon Mutator and MITE Pif/Harbinger) have shaped the regulatory network in each tissue, and that MITEs have provided new transcription factor binding sites that are involved in husk tissue-specificity.SignificanceEnhancers play a major role in regulating tissue-specific gene expression in higher eukaryotes, including angiosperms. While molecular characterization of enhancers has improved over the past years, identifying their target genes at the genome-wide scale remains challenging. Here, we integrate genomic, epigenomic and transcriptomic data to decipher the tissue-specific gene regulatory network controlled by enhancers at two different stages of maize leaf development. Using a systems biology approach, we identify transcription factor families regulating gene tissue-specific expression in husk and seedling leaves, and characterize the enhancers likely to be involved. We show that a large part of maize enhancers is derived from transposable elements, which can provide novel transcription factor binding sites crucial to the regulation of tissue-specific biological functions.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jufeng Zhang ◽  
Xia Luo ◽  
Huiming Li ◽  
Ling Deng ◽  
Ying Wang

Colorectal cancer (CRC) is one of the most common malignancies resulting in high mortality worldwide. Signal transducer and activator of transcription 3 (STAT3) is an oncogenic transcription factor which is frequently activated and aberrantly expressed in CRC. MicroRNAs (miRNAs) are a class of small noncoding RNAs which play important roles in many cancers. However, little is known about the global miRNA profiles mediated by STAT3 in CRC cells. In the present study, we applied RNA interference to inhibit STAT3 expression and profiled the miRNA expression levels regulated by STAT3 in CRC cell lines with deep sequencing. We found that 26 and 21 known miRNAs were significantly overexpressed and downexpressed, respectively, in the STAT3-knockdown CRC cell line SW480 (SW480/STAT3-siRNA) compared to SW480 transfected with scrambled siRNAs (SW480/siRNA-control). The miRNA expression profiling was then validated by quantitative real-time PCR for selected known miRNAs. We further predicted the putative target genes for the dysregulated miRNAs and carried out functional annotation including GO enrichment and KEGG pathway analysis for selected miRNA targets. This study directly depicts STAT3-mediated miRNA profiles in CRC cells, which provides a possible way to discover biomarkers for CRC therapy.


2013 ◽  
Vol 11 (01) ◽  
pp. 1340006 ◽  
Author(s):  
JAN GRAU ◽  
JENS KEILWAGEN ◽  
ANDRÉ GOHR ◽  
IVAN A. PAPONOV ◽  
STEFAN POSCH ◽  
...  

DNA-binding proteins are a main component of gene regulation as they activate or repress gene expression by binding to specific binding sites in target regions of genomic DNA. However, de-novo discovery of these binding sites in target regions obtained by wet-lab experiments is a challenging problem in computational biology, which has not yet been solved satisfactorily. Here, we present a detailed description and analysis of the de-novo motif discovery tool Dispom, which has been developed for finding binding sites of DNA-binding proteins that are differentially abundant in a set of target regions compared to a set of control regions. Two additional features of Dispom are its capability of modeling positional preferences of binding sites and adjusting the length of the motif in the learning process. Dispom yields an increased prediction accuracy compared to existing tools for de-novo motif discovery, suggesting that the combination of searching for differentially abundant motifs, inferring their positional distributions, and adjusting the motif lengths is beneficial for de-novo motif discovery. When applying Dispom to promoters of auxin-responsive genes and those of ABI3 target genes from Arabidopsis thaliana, we identify relevant binding motifs with pronounced positional distributions. These results suggest that learning motifs, their positional distributions, and their lengths by a discriminative learning principle may aid motif discovery from ChIP-chip and gene expression data. We make Dispom freely available as part of Jstacs, an open-source Java library that is tailored to statistical sequence analysis. To facilitate extensions of Dispom, we describe its implementation using Jstacs in this manuscript. In addition, we provide a stand-alone application of Dispom at http://www.jstacs.de/index.php/Dispom for instant use.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Hui Chen ◽  
Zhiying Xu ◽  
Hua Cai ◽  
Ya Peng ◽  
Li Yang ◽  
...  

Objectives. The epithelial-to-mesenchymal transition (EMT) is one key step for the invasion and metastasis of colorectal cancer (CRC). Up until now, the underlying mechanism of EMT in CRC is still unpromising. Thus, it is essential to have a better understanding of its carcinogenesis. The transfer RNA-derived small fragments (tsRNAs) are a new group of small noncoding RNAs (sncRNAs), including tRNA-derived stress-induced RNAs (tiRNAs) and tRNA-derived fragments (tRFs), which have been observed to play an important role in many cancers. However, the relationship between tRFs and EMT in CRC is still unknown. Herein, we aimed to investigate the involvement of tRFs in EMT and its contribution to CRC development. Methods. We identified the differentially expressed tsRNAs in colorectal cancer cell line HT29 treated with TGF-β compared with control cells by using high-throughput sequencing and quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). QRT-PCR was conducted to validate the differentially expressed fragments in 68 CRC tumor samples (22 women and 46 men) and adjacent nontumor samples. The association of the expression of tRFs with CRC metastasis and clinical stage was analyzed. Meanwhile, the correlation between tRF expression and overall survival (OS) was also analyzed. TargetScan and miRanda and multiple bioinformatic approaches were used to predict the possible target genes of tsRNAs and analyze possible functions of the tRFs. Results. A series of differentially expressed tsRNAs were identified in TGF-β-treated HT29 cells compared with control cells. tRF-phe-GAA-031 and tRF-VAL-TCA-002 were found to be significantly upregulated in CRC tissues compared to adjacent nontumor tissues. They were significantly correlated with distant metastasis and clinical stage. We compared the differences between tumor samples and nontumor tissues from the ROC curves. The area under the ROC curve (AUC) was up to 0.7554 (95% confidence interval: 0.6739 to 0.8369, p < 0.0001 ) for tRF-Phe-GAA-031 and up to 0.7313 (95% confidence interval: 0.6474 to 0.8151, p < 0.0001 ) for tRF-VAL-TCA-002. For OS analysis, higher tRF-phe-GAA-031 and tRF-VAL-TCA-002 expressions were associated with shorter survival for CRC patients. Conclusion. A series of differentially expressed tsRNAs are identified in the EMT process of CRC. And tRF-phe-GAA-031 and tRF-VAL-TCA-002 are higher expressed in CRC tissues, and they might play an important role in the metastasis of CRC. Meanwhile, they may be potential biomarkers and intervention targets in the clinical treatment of CRC.


2021 ◽  
pp. ASN.2021010101
Author(s):  
Zhiheng Liu ◽  
Yunjing Liu ◽  
Lin Dang ◽  
Meijuan Geng ◽  
Yongzhan Sun ◽  
...  

Background Genome-wide mapping of transcription factor (TF) binding sites is essential to identify a TF's direct target genes in kidney development and diseases. However, due to the cellular complexity of the kidney and limited numbers of a given cell type, it has been challenging to determine the binding sites of a TF in vivo. cAMP-response element-binding protein (CREB) is phosphorylated and hyperactive in autosomal dominant polycystic kidney disease (ADPKD). We focus on CREB as an example to profile genomic loci bound by a TF and to identify its target genes using low numbers of specific kidney cells. Methods Cleavage under targets and release using nuclease (CUT&RUN) assays were performed with Dolichos biflorus agglutinin (DBA)-positive tubular epithelial cells from normal and ADPKD mouse kidneys. Pharmacological inhibition of CREB with 666-15 and genetic inhibition with A-CREB were undertaken using ADPKD mouse models. Results CUT&RUN to profile genome-wide distribution of phosphorylated CREB (p-CREB) indicated correlation of p-CREB binding with active histone modifications (H3K4me3 and H3K27ac) in cystic epithelial cells. Integrative analysis with CUT&RUN and RNA-sequencing revealed CREB direct targets, including genes involved in ribosome biogenesis and protein synthesis. Pharmacological and genetic inhibition of CREB suppressed cyst growth in ADPKD mouse models. Conclusions CREB promotes cystogenesis by activating ribosome biogenesis genes. CUT&RUN, coupled with transcriptomic analysis, enables interrogation of TF binding and identification of direct TF targets from a low number of specific kidney cells.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1845-1845
Author(s):  
Mariateresa Fulciniti ◽  
Manoj Bashin ◽  
Mehmet Kemal Samur ◽  
Rajya Bandi ◽  
Parantu K Shah ◽  
...  

Abstract Transcription factors (TFs) are important oncogenic regulator and are altered during tumor initiation and progression. Our oncogenomic analysis of gene expression data from large clinically-annotated patient samples identified TF Dp1 as one of the most important gene affecting both overall and event-free survival in multiple myeloma (MM). Elevated Dp1 expression was predictive of adverse clinical outcome, independent of Dp1 protein partners, E2Fs and RB, suggesting direct impact of Dp1 and providing the rationale to further evaluate its specific role in MM. We have observed high level of Dp1 expression and activity in MM cells which was further induced after interaction with bone marrow stromal cells (BMSC). Moreover, Dp1 knock-down using specific sh-RNA decreased MM cell growth in 5 MM cell lines with different genetic background, with a concomitant G1 arrest and late induction of apoptosis. These data suggest a role for Dp1 in MM cell proliferation and survival and established a rationale to identify its molecular impact. We have further characterized Dp1 activity using chromatin immunoprecipitation with Dp1 or E2F1 specific antibody followed by genome wide sequencing (ChIP-Seq) to identify Dp1-binding regions in MM. We have identified 2783 exclusive Dp1 binding regions in two MM cell lines. Examination of Dp1 and E2F1 binding revealed that Dp1 co-occupies 65% of the binding sites with E2F1. The DAVID gene set enrichment analysis showed that identified genes were related to cell cycle, as well as to transcriptional and translational processes. To assess the functional consequences of Dp1 DNA binding, the ChIP-Seq data were supplemented with gene expression profile of MM1S cells following shRNA-mediated Dp1 and E2F knock-downs. Integrated analysis incorporating ChIP-seq and expression data identified Dp1 response program in MM. 805 (46%) of 1752 differentially expressed genes also have binding sites for Dp1 and likely are direct transcriptional targets of Dp1 in MM. Enrichment analysis of direct targets revealed that the most strongly enriched pathways for both Dp1 and E2F1 genes combined were related to the cell cycle, especially DNA replication, repair, and metabolism. Interestingly, pathway analysis identified ‘‘regulation of RNA metabolic processes’’ (40 target genes), ‘‘RNA processing’’ (93 target genes) ‘‘RNA splicing’’ (95 genes), and ‘‘RNA binding’’ (53 genes) as statistically significant RNA-related categories enriched among Dp1 target genes, suggests role of Dp1 in RNA splicing. Based on our previous data showing that dysregulated alternate splicing (AS) has significant impact on overall clinical outcome MM, we evaluated the expression of Dp1-modulated splicing factors in our clinically annotated cohort of MM patients and 5 normal PCs. We identified 23 SFs upregulated in MM compared to normal plasma cells. Importantly, the increased expression of 12 of these SFs was linked with poor prognosis in this cohort of myeloma patients. Our data show for the first time that SFs are upregulated in myeloma and link to clinical outcome. To evaluate the impact of Dp1 on alternate splicing (AS), we performed genome-wide analysis of alternate splicing in total RNA from Dp1 silenced MM1S cells using Human Exon1 ST arrays. Splicing profiles showed that Dp1 knock down causes widespread changes in AS. We have identified 3683 genes whose one exon has splicing index more than 1.5 in in shDP1 compared to control pLKO.1-transduced MM1S cells, suggesting impact of Dp1 silencing on alternate splicing. We are now evaluating impact of a peptide able to disrupt Dp1-E2F1 binding with consequent effect on MM cell growth and alternate splicing. In conclusion, our investigation showed that the Dp1/E2F1 signaling pathway plays significant role in myeloma and can directly activate transcription of specific SFs with effect on alternate splicing and potential functional, clinical and therapeutic implications in myeloma. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document