scholarly journals p66ShcAand Oxidative Stress Modulate Myogenic Differentiation and Skeletal Muscle Regeneration after Hind Limb Ischemia

2007 ◽  
Vol 282 (43) ◽  
pp. 31453-31459 ◽  
Author(s):  
Germana Zaccagnini ◽  
Fabio Martelli ◽  
Alessandra Magenta ◽  
Chiara Cencioni ◽  
Pasquale Fasanaro ◽  
...  
Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Keisuke Miyake ◽  
Shigeru Miyagawa ◽  
Takashi Shibuya ◽  
Yoshiki Sawa

Introduction: How to control inflammation, especially induction of macrophage polarization that are regulated by Extra-cellular matrix (ECM) is a prerequisite for tissue regeneration in damaged organs. In this study, we administered clustered myoblast cells with ECM framework into hind limb ischemia (HLI) model, and evaluated the change in macrophages and effect on tissue regeneration. Methods: Myoblast cells isolated from C57BL/6 mice were expanded to form cell patch with ECM framework (10 6 cells/sheet) and then fragmented and administered as cluster cells (CC group, n=6). As control groups, non-clustered single myoblast cells (SC, n=6) or saline (SA, n=6) was administered. Blood perfusion was evaluated with Laser Doppler Perfusion imaging (LDPI). Leg muscles were obtained and analyzed regarding angiogenesis, skeletal muscle regeneration, and inflammation including macrophage status. Results: LDPI showed significant improvement in CC compared with SC (P=0.001) and SA (P<0.0001) at day 28. Also, markedly augmented angiogenesis and muscle regeneration were detected in CC. Regarding inflammation, the number of CD68+ macrophages is significantly larger in CC throughout within 7 days after administration, but the character of the macrophages was quite different during time courses. Although in SC and SA macrophage polarization was rarely detected within 7 days, marked polarization was detected at day 5 only in CC. At day 5, CD11c+/CD206- (inflammatory, M1) and CD11c-/CD206+ (anti-inflammatory, M2) macrophages are discerned conspicuously (M1: 148.7±104.4/mm 2 , M2: 185.2±46.3/mm 2 , non-polarized CD11c+/CD206+: 140.9±99.4/mm 2 ), while at day 3 non-polarized macrophages were almost exclusive (M1: 2.0±2.3/mm 2 , M2: 3.1±4.0/mm 2 , CD11c+/CD206+: 410.2±90.6/mm 2 ). Consistently significant increase in IL-10 and TGF-β, that are cytokines secreted by M2 macrophages, was detected at day 5 and 7 in CC. Conclusions: Myoblast cells administration with ECM framework, which was formed during cell patch formation, augmented macrophage polarization to show anti-inflammatory effect, creating appropriate microenvironment for angiogenesis and muscle regeneration in HLI.


2020 ◽  
Author(s):  
Shi Chen ◽  
Chao Du ◽  
Lilong Pan ◽  
Qian Yang ◽  
Peihe Yu ◽  
...  

Abstract Background: Limb ischemic necrosis is mainly attributed to peripheral arterial disease (PAD). Reducing oxidative stress and promoting damaged skeletal muscle regeneration may be benefit for ischemic limb treatment. Proanthocyanidins (PC) is a powerful antioxidant and free radical scavenger, but little is known about its role and related molecular mechanism in limb ischemic injury. The current study was undertaken to explore its role in the damaged skeletal muscle regeneration both in vitro and vivo, and whether MicroRNAs (miRNAs) involved in this process. Methods: The potential effects of PC on the damaged muscle regeneration were explored in human skeletal muscle satellite cells (HSKMSCs) under hypoxic-ischemic condition and in mice limb ischemia model, then, aberrant expression of miRNAs in ischemic skeletal muscles were determined by microarray analysis, and regulatory mechanism of the specific miRNA on HSKMSCs myogenic differentiation was further investigated by gain and loss of functional experiments. Additionally, the direct target gene was examined by luciferase reporter assay.Results: In mice limb ischemia model, our results revealed that PC reduced oxidative stress level, significantly promoted ischemic limb damaged muscle regeneration and motor function recovery, then, aberrant expression of miRNAs in ischemic skeletal muscles were determined by microarray analysis, combine with the results of the RT-qPCR, the miR-133b-3p was proved to be the specific miRNA. In vitro, our results revealed that PC induced the overexpression of miR-133b to activate the p38-MAPK signal pathway and increased the myogenic differentiation-related molecules expression, which eventually promoted myotubes formation. Furthermore, MKP1 was confirmed a direct target gene of miR-133b.Conclusion: Our results suggest that PC display skeletal muscle protective properties that are mediated by miR-133b /MKP1/ p38-MAPK signal axis, offering a novel therapeutic opportunity for limb ischemic injury.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tannaz Norizadeh Abbariki ◽  
Zita Gonda ◽  
Denise Kemler ◽  
Pavel Urbanek ◽  
Tabea Wagner ◽  
...  

AbstractThe process of myogenesis which operates during skeletal muscle regeneration involves the activation of muscle stem cells, the so-called satellite cells. These then give rise to proliferating progenitors, the myoblasts which subsequently exit the cell cycle and differentiate into committed precursors, the myocytes. Ultimately, the fusion of myocytes leads to myofiber formation. Here we reveal a role for the transcriptional co-regulator nTRIP6, the nuclear isoform of the LIM-domain protein TRIP6, in the temporal control of myogenesis. In an in vitro model of myogenesis, the expression of nTRIP6 is transiently up-regulated at the transition between proliferation and differentiation, whereas that of the cytosolic isoform TRIP6 is not altered. Selectively blocking nTRIP6 function results in accelerated early differentiation followed by deregulated late differentiation and fusion. Thus, the transient increase in nTRIP6 expression appears to prevent premature differentiation. Accordingly, knocking out the Trip6 gene in satellite cells leads to deregulated skeletal muscle regeneration dynamics in the mouse. Thus, dynamic changes in nTRIP6 expression contributes to the temporal control of myogenesis.


PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0159411 ◽  
Author(s):  
Keith G. Avin ◽  
Neal X. Chen ◽  
Jason M. Organ ◽  
Chad Zarse ◽  
Kalisha O’Neill ◽  
...  

2008 ◽  
Vol 48 (3) ◽  
pp. 701-708 ◽  
Author(s):  
Jeanwan Kang ◽  
Hassan Albadawi ◽  
Virendra I. Patel ◽  
Thomas A. Abbruzzese ◽  
Jin-Hyung Yoo ◽  
...  

2020 ◽  
Vol 40 (12) ◽  
Author(s):  
Michael E. O’Brien ◽  
James Londino ◽  
Marcus McGinnis ◽  
Nathaniel Weathington ◽  
Jessica Adair ◽  
...  

ABSTRACT FBXL2 is an important ubiquitin E3 ligase component that modulates inflammatory signaling and cell cycle progression, but its molecular regulation is largely unknown. Here, we show that tumor necrosis factor alpha (TNF-α), a critical cytokine linked to the inflammatory response during skeletal muscle regeneration, suppressed Fbxl2 mRNA expression in C2C12 myoblasts and triggered significant alterations in cell cycle, metabolic, and protein translation processes. Gene silencing of Fbxl2 in skeletal myoblasts resulted in increased proliferative responses characterized by activation of mitogen-activated protein (MAP) kinases and nuclear factor kappa B and decreased myogenic differentiation, as reflected by reduced expression of myogenin and impaired myotube formation. TNF-α did not destabilize the Fbxl2 transcript (half-life [t1/2], ∼10 h) but inhibited SP1 transactivation of its core promoter, localized to bp −160 to +42 within the proximal 5′ flanking region of the Fbxl2 gene. Chromatin immunoprecipitation and gel shift studies indicated that SP1 interacted with the Fbxl2 promoter during cellular differentiation, an effect that was less pronounced during proliferation or after TNF-α exposure. TNF-α, via activation of JNK, mediated phosphorylation of SP1 that impaired its binding to the Fbxl2 promoter, resulting in reduced transcriptional activity. The results suggest that SP1 transcriptional activation of Fbxl2 is required for skeletal muscle differentiation, a process that is interrupted by a key proinflammatory myopathic cytokine. IMPORTANCE Skeletal muscle regeneration and repair involve the recruitment and proliferation of resident satellite cells that exit the cell cycle during the process of myogenic differentiation to form myofibers. We demonstrate that the ubiquitin E3 ligase subunit FBXL2 is essential for skeletal myogenesis through its important effects on cell cycle progression and cell proliferative signaling. Further, we characterize a new mechanism whereby sustained stimulation by a major proinflammatory cytokine, TNF-α, regulates skeletal myogenesis by inhibiting the interaction of SP1 with the Fbxl2 core promoter in proliferating myoblasts. Our findings contribute to the understanding of skeletal muscle regeneration through the identification of Fbxl2 as both a critical regulator of myogenic proliferative processes and a susceptible gene target during inflammatory stimulation by TNF-α in skeletal muscle. Modulation of Fbxl2 activity may have relevance to disorders of muscle wasting associated with sustained proinflammatory signaling.


2019 ◽  
Vol 20 (22) ◽  
pp. 5686 ◽  
Author(s):  
Satoshi Oikawa ◽  
Minjung Lee ◽  
Takayuki Akimoto

Skeletal muscle has a remarkable regenerative capacity, which is orchestrated by multiple processes, including the proliferation, fusion, and differentiation of the resident stem cells in muscle. MicroRNAs (miRNAs) are small noncoding RNAs that mediate the translational repression or degradation of mRNA to regulate diverse biological functions. Previous studies have suggested that several miRNAs play important roles in myoblast proliferation and differentiation in vitro. However, their potential roles in skeletal muscle regeneration in vivo have not been fully established. In this study, we generated a mouse in which the Dicer gene, which encodes an enzyme essential in miRNA processing, was knocked out in a tamoxifen-inducible way (iDicer KO mouse) and determined its regenerative potential after cardiotoxin-induced acute muscle injury. Dicer mRNA expression was significantly reduced in the tibialis anterior muscle of the iDicer KO mice, whereas the expression of muscle-enriched miRNAs was only slightly reduced in the Dicer-deficient muscles. After cardiotoxin injection, the iDicer KO mice showed impaired muscle regeneration. We also demonstrated that the number of PAX7+ cells, cell proliferation, and the myogenic differentiation capacity of the primary myoblasts did not differ between the wild-type and the iDicer KO mice. Taken together, these data demonstrate that Dicer is a critical factor for muscle regeneration in vivo.


Sign in / Sign up

Export Citation Format

Share Document