scholarly journals Peroxisome Proliferator-activated Receptor γ Stimulation of Adipocyte ApoE Gene Transcription Mediated by the Liver Receptor X Pathway

2009 ◽  
Vol 284 (16) ◽  
pp. 10453-10461 ◽  
Author(s):  
Lili Yue ◽  
Theodore Mazzone
Endocrinology ◽  
2008 ◽  
Vol 149 (9) ◽  
pp. 4647-4657 ◽  
Author(s):  
Vladimir T. Todorov ◽  
Michael Desch ◽  
Thomas Schubert ◽  
Armin Kurtz

We recently reported that human renin gene transcription is stimulated by the nuclear receptor peroxisome proliferator-activated receptor (PPAR)-γ in the renin-producing cell line Calu-6. The effect of PPARγ was mapped to two sequences in the renin promoter: a direct repeat hormone response element (HRE), which is related to the classical PPAR response element (PPRE) and a nonconsensus palindromic element with a 3-bp spacer (Pal3). We now find that PPARγ binds to the renin HRE. Neither the human renin HRE nor the consensus PPRE was sufficient to attain the maximal stimulation of renin promoter activity by the PPARγ agonist rosiglitazone. In contrast, the human renin Pal3 element mediates both the full PPARγ-dependent activation of transcription and the PPARγ-driven basal renin gene transcription. The human renin Pal3 sequence was found to selectively bind PPARγ and the retinoid X receptor-α from Calu-6 nuclear extracts. This is in contrast to the consensus PPRE, which can bind other nuclear proteins. PPARγ knockdown paradoxically did not attenuate the stimulation of the endogenous renin gene expression by rosiglitazone. Similarly, a deficiency of PPARγ did not attenuate the activation of the minimal human renin promoter, which contains the endogenous Pal3 motif. However, when the human renin Pal3 site was replaced by the consensus PPRE sequence, PPARγ knockdown abrogated the effect of rosiglitazone on renin promoter activity. Thus, the human renin Pal3 site appears to be critical for the PPARγ-dependent regulation of gene expression by mediating maximal transcription activation, particularly at the low cellular level of PPARγ.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Mandy Bloch ◽  
Anna Foryst-Ludwig ◽  
Thomas Unger ◽  
Ulrich Kintscher

The study aimed to identify new nuclear cofactors for PPARgamma (peroxisome proliferator-activated receptor gamma)-dependent gene transcription in human aortic smooth muscle cells (HASMC) in order to develop new PPARgamma-ligands with improved clinical safety in the absence of deleterious cardiovascular side effects. Using an Oligo GEArray® Human Nuclear Receptors and Coregulators Microarray for gene expression profiling, we identified the transcriptional regulator and chromatin modifying High Mobility Group (HMG) A1 protein highly expressed in unstimulated HASMC. PPARgamma-dependent gene regulation was studied by analysis of PMA-induced MMP-9 (matrix metalloproteinase 9) expression ± pioglitazone (pio 10μM). PMA (50ng/ml) stimulated MMP-9 mRNA expression by 46.3±22.3-fold (p<0.05 vs. vehicle) which was markedly blocked by pio (10μM: 17.4±4.8-fold vs. PMA alone p<0.05). Pio also blocked PMA-induced MMP-9 promoter activity by 45% in transactivation assays in HEK293 using a pGL3-MMP-9 2.2 kb construct. To evaluate the role of HMGA1, gene silencing experiments with siRNA for HMGA1 were performed (91 % in HASMC and 80.2% in HEK293 reduction of HMGA1 protein expression). HMGA1 siRNA completely abolished PPARgamma-mediated MMP9-mRNA repression (control siRNA: pio-mediated MMP-9 regulation vs. PMA alone: −66.8 % in HASMC and −59.3% in HEK293 p<0.01; HMGA1 siRNA: pio-mediated MMP-9 regulation vs. PMA alone: +10.7 % in HASMC and +14.7% in HEK293 vs. PMA alone; p=n.s.). Knockdown of HMGA1 expression reverse trans-repression of MMP9 by PPARgamma in HASMCs. By using ChIP assay we could demonstrate that pio-induced PPARgamma activation leads to a potent recruitment of PPARgamma (3.0 fold vs.1.15 fold PMA alone) and HMGA1 complexes (1.24 fold vs. 0.0 fold PMA alone) to the MMP9 promoter in HASMC. In consonance with reduced promoter activity, RNA-Polymerase II was removed from the MMP9 promoter by pio (0.08 fold vs 1.04 fold PMA alone). In conclusion, HMGA1 is required for PPARgamma-mediated repression of MMP-9 gene transcription. Ligand-induced HMGA1-PPARgamma interactions might be an important determinant for ligand-specific anti-atherosclerotic actions.


Sign in / Sign up

Export Citation Format

Share Document