scholarly journals The InsP7 phosphatase Siw14 regulates inositol pyrophosphate levels to control localization of the general stress response transcription factor Msn2

2019 ◽  
Vol 295 (7) ◽  
pp. 2043-2056 ◽  
Author(s):  
Elizabeth A. Steidle ◽  
Victoria A. Morrissette ◽  
Kotaro Fujimaki ◽  
Lucy Chong ◽  
Adam C. Resnick ◽  
...  

The environmental stress response (ESR) is critical for cell survival. Yeast cells unable to synthesize inositol pyrophosphates (PP-InsPs) are unable to induce the ESR. We recently discovered a diphosphoinositol pentakisphosphate (PP-InsP5) phosphatase in Saccharomyces cerevisiae encoded by SIW14. Yeast strains deleted for SIW14 have increased levels of PP-InsPs. We hypothesized that strains with high inositol pyrophosphate levels will have an increased stress response. We examined the response of the siw14Δ mutant to heat shock, nutrient limitation, osmotic stress, and oxidative treatment using cell growth assays and found increased resistance to each. Transcriptional responses to oxidative and osmotic stresses were assessed using microarray and reverse transcriptase quantitative PCR. The ESR was partially induced in the siw14Δ mutant strain, consistent with the increased stress resistance, and the mutant strain further induced the ESR in response to oxidative and osmotic stresses. The levels of PP-InsPs increased in WT cells under oxidative stress but not under hyperosmotic stress, and they were high and unchanging in the mutant. Phosphatase activity of Siw14 was inhibited by oxidation that was reversible. To determine how altered PP-InsP levels affect the ESR, we performed epistasis experiments with mutations in rpd3 and msn2/4 combined with siw14Δ. We show that mutations in msn2Δ and msn4Δ, but not rpd3, are epistatic to siw14Δ by assessing growth under oxidative stress conditions and expression of CTT1. Msn2-GFP nuclear localization was increased in the siw14Δ. These data support a model in which the modulation of PP-InsPs influence the ESR through general stress response transcription factors Msn2/4.

2010 ◽  
Vol 285 (25) ◽  
pp. 19521-19531 ◽  
Author(s):  
Mima Ivanova Petkova ◽  
Nuria Pujol-Carrion ◽  
Javier Arroyo ◽  
Jesús García-Cantalejo ◽  
Maria Angeles de la Torre-Ruiz

2020 ◽  
Vol 96 (8) ◽  
Author(s):  
María Victoria Barcarolo ◽  
Natalia Gottig ◽  
Jorgelina Ottado ◽  
Betiana S Garavaglia

ABSTRACT Xanthomonas citri subsp. citri (Xcc) is the bacteria responsible for citrus canker. During its life cycle Xcc is found on leaves as epiphyte, where desiccation conditions may occur. In this work, two Xcc genes, XAC0100 and XAC4007, predicted in silico to be involved in general stress response, were studied under salt, osmotic, desiccation, oxidative and freezing stress, and during plant-pathogen interaction. Expression of XAC0100 and XAC4007 genes was induced under these stress conditions. Disruption of both genes in Xcc caused decreased bacterial culturability under desiccation, freezing, osmotic and oxidative stress. Importantly, the lack of these genes impaired Xcc epiphytic fitness. Both Xac0100 and Xac4007 recombinant proteins showed protective effects on Xanthomonas cells subjected to drought stress. Also, Escherichia coli overexpressing Xac4007 showed a better performance under standard culture, saline and osmotic stress and were more tolerant to freezing and oxidative stress than wild type E. coli. Moreover, both Xac0100 and Xac4007 recombinant proteins were able to prevent the freeze-thaw-induced inactivation of L-Lactate dehydrogenase. In conclusion, Xac0100 and Xac4007 have a relevant role as bacteria and protein protectors; and these proteins are crucial to bacterial pathogens that must face environmental stressful conditions that compromise the accomplishment of the complete virulence process.


2001 ◽  
Vol 183 (24) ◽  
pp. 7318-7328 ◽  
Author(s):  
John D. Helmann ◽  
Ming Fang Winston Wu ◽  
Phil A. Kobel ◽  
Francisco-Javier Gamo ◽  
Michael Wilson ◽  
...  

ABSTRACT In response to heat stress, Bacillus subtilisactivates the transcription of well over 100 different genes. Many of these genes are members of a general stress response regulon controlled by the secondary sigma factor, ςB, while others are under control of the HrcA or CtsR heat shock regulators. We have used DNA microarrays to monitor the global transcriptional response to heat shock. We find strong induction of known ςB-dependent genes with a characteristic rapid induction followed by a return to near prestimulus levels. The HrcA and CtsR regulons are also induced, but with somewhat slower kinetics. Analysis of DNA sequences proximal to newly identified heat-induced genes leads us to propose ∼70 additional members of the ςB regulon. We have also identified numerous heat-induced genes that are not members of known heat shock regulons. Notably, we observe very strong induction of arginine biosynthesis and transport operons. Induction of several genes was confirmed by quantitative reverse transcriptase PCR. In addition, the transcriptional responses measured by microarray hybridization compare favorably with the numerous previous studies of heat shock in this organism. Since many different conditions elicit both specific and general stress responses, knowledge of the heat-induced general stress response reported here will be helpful for interpreting future microarray studies of other stress responses.


2013 ◽  
Vol 9 (9) ◽  
pp. 2331 ◽  
Author(s):  
Jeroen B. van der Steen ◽  
Yusuke Nakasone ◽  
Johnny Hendriks ◽  
Klaas J. Hellingwerf

Bioengineered ◽  
2012 ◽  
Vol 3 (2) ◽  
pp. 93-103 ◽  
Author(s):  
Marta Utratna ◽  
Eoin Cosgrave ◽  
Claas Baustian ◽  
Rhodri Ceredig ◽  
Conor O’Byrne

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 372
Author(s):  
Kiran J. van der Laan ◽  
Aryan Morita ◽  
Felipe P. Perona-Martinez ◽  
Romana Schirhagl

Fluorescent nanodiamonds (FNDs) are proposed to be used as free radical biosensors, as they function as magnetic sensors, changing their optical properties depending on their magnetic surroundings. Free radicals are produced during natural cell metabolism, but when the natural balance is disturbed, they are also associated with diseases and aging. Sensitive methods to detect free radicals are challenging, due to their high reactivity and transiency, providing the need for new biosensors such as FNDs. Here we have studied in detail the stress response of an aging model system, yeast cells, upon FND internalization to assess whether one can safely use this biosensor in the desired model. This was done by measuring metabolic activity, the activity of genes involved in different steps and the locations of the oxidative stress defense systems and general free radical activity. Only minimal, transient FND-related stress effects were observed, highlighting excellent biocompatibility in the long term. This is a crucial milestone towards the applicability of FNDs as biosensors in free radical research.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lisa Gottschlich ◽  
Petra Geiser ◽  
Miriam Bortfeld-Miller ◽  
Christopher M. Field ◽  
Julia A. Vorholt

2020 ◽  
Vol 117 (29) ◽  
pp. 17031-17040 ◽  
Author(s):  
Allegra Terhorst ◽  
Arzu Sandikci ◽  
Abigail Keller ◽  
Charles A. Whittaker ◽  
Maitreya J. Dunham ◽  
...  

Aneuploidy, a condition characterized by whole chromosome gains and losses, is often associated with significant cellular stress and decreased fitness. However, how cells respond to the aneuploid state has remained controversial. In aneuploid budding yeast, two opposing gene-expression patterns have been reported: the “environmental stress response” (ESR) and the “common aneuploidy gene-expression” (CAGE) signature, in which many ESR genes are oppositely regulated. Here, we investigate this controversy. We show that the CAGE signature is not an aneuploidy-specific gene-expression signature but the result of normalizing the gene-expression profile of actively proliferating aneuploid cells to that of euploid cells grown into stationary phase. Because growth into stationary phase is among the strongest inducers of the ESR, the ESR in aneuploid cells was masked when stationary phase euploid cells were used for normalization in transcriptomic studies. When exponentially growing euploid cells are used in gene-expression comparisons with aneuploid cells, the CAGE signature is no longer evident in aneuploid cells. Instead, aneuploid cells exhibit the ESR. We further show that the ESR causes selective ribosome loss in aneuploid cells, providing an explanation for the decreased cellular density of aneuploid cells. We conclude that aneuploid budding yeast cells mount the ESR, rather than the CAGE signature, in response to aneuploidy-induced cellular stresses, resulting in selective ribosome loss. We propose that the ESR serves two purposes in aneuploid cells: protecting cells from aneuploidy-induced cellular stresses and preventing excessive cellular enlargement during slowed cell cycles by down-regulating translation capacity.


Sign in / Sign up

Export Citation Format

Share Document