scholarly journals Evaluation of the Oxidative Stress Response of Aging Yeast Cells in Response to Internalization of Fluorescent Nanodiamond Biosensors

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 372
Author(s):  
Kiran J. van der Laan ◽  
Aryan Morita ◽  
Felipe P. Perona-Martinez ◽  
Romana Schirhagl

Fluorescent nanodiamonds (FNDs) are proposed to be used as free radical biosensors, as they function as magnetic sensors, changing their optical properties depending on their magnetic surroundings. Free radicals are produced during natural cell metabolism, but when the natural balance is disturbed, they are also associated with diseases and aging. Sensitive methods to detect free radicals are challenging, due to their high reactivity and transiency, providing the need for new biosensors such as FNDs. Here we have studied in detail the stress response of an aging model system, yeast cells, upon FND internalization to assess whether one can safely use this biosensor in the desired model. This was done by measuring metabolic activity, the activity of genes involved in different steps and the locations of the oxidative stress defense systems and general free radical activity. Only minimal, transient FND-related stress effects were observed, highlighting excellent biocompatibility in the long term. This is a crucial milestone towards the applicability of FNDs as biosensors in free radical research.

Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1089
Author(s):  
Acharya Balkrishna ◽  
Akansha Rohela ◽  
Abhishek Kumar ◽  
Ashwani Kumar ◽  
Vedpriya Arya ◽  
...  

Drug resistance among microbial pathogens and oxidative stress caused by reactive oxygen species are two of the most challenging global issues. Firstly, drug-resistant pathogens cause several fatalities every year. Secondly aging and a variety of diseases, such as cardiovascular disease and cancer, are associated with free radical generated oxidative stress. The treatments currently available are limited, ineffective, or less efficient, so there is an immediate need to tackle these issues by looking for new therapies to resolve resistance and neutralize the harmful effects of free radicals. In the 21st century, the best way to save humans from them could be by using plants as well as their bioactive constituents. In this specific context, Jasminum is a major plant genus that is used in the Ayurvedic system of medicine to treat a variety of ailments. The information in this review was gathered from a variety of sources, including books, websites, and databases such as Science Direct, PubMed, and Google Scholar. In this review, a total of 14 species of Jasminum have been found to be efficient and effective against a wide variety of microbial pathogens. In addition, 14 species were found to be active free radical scavengers. The review is also focused on the disorders related to oxidative stress, and it was concluded that Jasminum grandiflorum and J. sambac normalized various parameters that were elevated by free radical generation. Alkaloids, flavonoids (rutoside), terpenes, phenols, and iridoid glucosides are among the main phytoconstituents found in various Jasminum species. Furthermore, this review also provides insight into the mechanistic basis of drug resistance, the generation of free radicals, and the role of Jasminum plants in combating resistance and neutralizing free radicals.


Author(s):  
Fasna K. A. ◽  
Geetha N. ◽  
Jean Maliekkal

Background: Ageing is characterized by a gradual decline in body functions and decreased ability to maintain homeostasis. The free radical theory of ageing proposed by Harman D states that ageing is a result of cumulative damage incurred by free radical reactions. Free radicals are highly reactive molecular species with unpaired electrons; generated in the body by several physiological processes. Prime target to free radical attack are the polyunsaturated fatty acids of cell membranes causing lipid peroxidation. The free radicals are neutralized by the exogenous and endogenous antioxidant systems. Oxidative stress occurs when large number of free radicals are produced or the antioxidant activity is impaired. The present study is focused to find out the role of oxidative stress in ageing.Methods: A cross sectional observational study was undertaken to assess the oxidative stress in ageing; by determining the levels of lipid peroxidation product- malondialdehyde (MDA), the antioxidants- superoxide dismutase (SOD) and ceruloplasmin in various age groups. 150 healthy subjects were selected randomly and categorised into three different age groups of 20-30 years, 40-59 years and 60-90 years; with 50 subjects in each group. Results were expressed as mean ± standard deviation.Results: a significant elevation in serum MDA level and a decline in SOD were observed in 40-59 years and 60-90 years age groups. However, an elevated ceruloplasmin level was found in the above age groups.Conclusions: Aforementioned observations are suggestive of an association between oxidative stress and the progression of ageing process.


Author(s):  
Abishek B. Santhakumar ◽  
Indu Singh

In the recent years, there has been a great deal of attention in investigating the disease preventive properties of functional foods. Particularly, impact of the antioxidant property of functional foods in reducing the risk or progression of chronic diseases has gained considerable interest amongst researchers and practitioners. Free radicals such as reactive oxygen species are generated in the body by exposure to a number of physiochemical or pathological mechanisms. It is imperative to preserve a balance between the levels of free radicals and antioxidants for routine physiological function, a disparity of which would accelerate oxidative stress. Increased oxidative stress and associated consequences in metabolic disorders such as obesity, cardiovascular diseases and diabetes has warranted the need for exogenous antioxidant concentrates derived from natural foods to alleviate the adverse effects. This chapter provides an overview on the efficacy of functional foods in reducing free radical-mediated damage in metabolic syndrome.


2018 ◽  
Vol 21 (9) ◽  
pp. 1274-1278 ◽  
Author(s):  
Samantha M Reilly ◽  
Zachary T Bitzer ◽  
Reema Goel ◽  
Neil Trushin ◽  
John P Richie

Abstract Introduction Free radicals and carbonyls produced by electronic cigarettes (e-cigs) have the potential to inflict oxidative stress. Recently, Juul e-cigs have risen drastically in popularity; however, there is no data on nicotine and oxidant yields from this new e-cig design. Methods Aerosol generated from four different Juul flavors was analyzed for carbonyls, nicotine, and free radicals. The e-liquids were analyzed for propylene glycol (PG) and glycerol (GLY) concentrations. To determine the effects of e-liquid on oxidant production, Juul pods were refilled with nicotine-free 30:70 or 60:40 PG:GLY with or without citral. Results No significant differences were found in nicotine (164 ± 41 µg/puff), free radical (5.85 ± 1.20 pmol/puff), formaldehyde (0.20 ± 0.10 µg/puff), and acetone (0.20 ± 0.05 µg/puff) levels between flavors. The PG:GLY ratio in e-liquids was ~30:70 across all flavors with GLY being slightly higher in tobacco and mint flavors. In general, when Juul e-liquids were replaced with nicotine-free 60:40 PG:GLY, oxidant production increased up to 190% and, with addition of citral, increased even further. Conclusions Juul devices produce free radicals and carbonyls, albeit, at levels substantially lower than those observed in other e-cig products, an effect only partially because of a low PG:GLY ratio. Nicotine delivery by these devices was as high as or higher than the levels previously reported from cigarettes. Implications These findings suggest that oxidative stress and/or damage resulting from Juul use may be lower than that from cigarettes or other e-cig devices; however, the high nicotine levels are suggestive of a greater addiction potential.


Author(s):  
Changyong Li ◽  
Mingwei Sheng ◽  
Yuanbang Lin ◽  
Dongwei Xu ◽  
Yizhu Tian ◽  
...  

AbstractFoxo1 transcription factor is an evolutionarily conserved regulator of cell metabolism, oxidative stress, inflammation, and apoptosis. Activation of Hedgehog/Gli signaling is known to regulate cell growth, differentiation, and immune function. However, the molecular mechanisms by which interactive cell signaling networks restrain oxidative stress response and necroptosis are still poorly understood. Here, we report that myeloid-specific Foxo1 knockout (Foxo1M-KO) mice were resistant to oxidative stress-induced hepatocellular damage with reduced macrophage/neutrophil infiltration, and proinflammatory mediators in liver ischemia/reperfusion injury (IRI). Foxo1M-KO enhanced β-catenin-mediated Gli1/Snail activity, and reduced receptor-interacting protein kinase 3 (RIPK3) and NIMA-related kinase 7 (NEK7)/NLRP3 expression in IR-stressed livers. Disruption of Gli1 in Foxo1M-KO livers deteriorated liver function, diminished Snail, and augmented RIPK3 and NEK7/NLRP3. Mechanistically, macrophage Foxo1 and β-catenin colocalized in the nucleus, whereby the Foxo1 competed with T-cell factor (TCF) for interaction with β-catenin under inflammatory conditions. Disruption of the Foxo1–β-catenin axis by Foxo1 deletion enhanced β-catenin/TCF binding, activated Gli1/Snail signaling, leading to inhibited RIPK3 and NEK7/NLRP3. Furthermore, macrophage Gli1 or Snail knockout activated RIPK3 and increased hepatocyte necroptosis, while macrophage RIPK3 ablation diminished NEK7/NLRP3-driven inflammatory response. Our findings underscore a novel molecular mechanism of the myeloid Foxo1–β-catenin axis in regulating Hedgehog/Gli1 function that is key in oxidative stress-induced liver inflammation and necroptosis.


2015 ◽  
Vol 12 (4) ◽  
pp. 269-274 ◽  
Author(s):  
UK Roy ◽  
M Pal ◽  
S Datta ◽  
S Harlalka

Background Aminophylline can trigger seizures in patients without known underlying epilepsy or added risk factor for seizure exacerbation in epilepsy. Most of these seizures are difficult to control and are underappreciated compared to other drug toxicities. Despite a long clinical history of aminophylline-induced seizures, relatively little is known about the underlying molecular mechanisms that contribute to methylxanthine-induced seizure generation.Objective The present study evaluated the possible involvement of free radicals in aminophylline induced seizures in rat.Method The rats were divided into two groups. The first group graded single doses of aminophylline from 100 to 300 mg/kg were administered intraperitoneally. On the basis of the results Aminophylline, a dose (300 mg/kg) producing tonic-clonic seizures and mortality in 100% animals was selected as control in the study. The second group were subjected to single antioxidant (Vitamin E or Vitamin C) or in combination for 45 days then single doses of aminophylline 300 mg/kg administered intraperitoneally to rats.Result Aminophylline induced convulsions in rats in a dose-dependent manner, and both incidence of seizure and mortality were maximum at 300 mg/kg and there was significant increase of free radical generation. But though pre-treatment with antioxidants showed differential attenuating effects on aminophylline induced free radical generation as we all known but they were very much ineffective in antagonizing aminophylline induced seizures and post-seizure mortality by any appreciable extent.Conclusion Though Aminophylline induces oxidative stress the results are suggestive that at least free radicals is not only cause of convulsiogenic effects and post-seizure mortality of aminophylline.Kathmandu University Medical Journal Vol.12(4) 2014; 269-274


2018 ◽  
Vol 8 (6-s) ◽  
pp. 373-376
Author(s):  
Rekha Bisht

The field of free radical chemistry has gained a great deal of attention in recent years. Free radicals reactive oxygen species generated by our body by various endogenous systems leads to various pathological conditions. A balance between free radicals and antioxidants is prerequisite for proper physiological function. Oxidative stress caused by generation of free radicals adversely alters lipids, proteins, and DNA and provokes a number of human ailments. Oxidative stress can be managed by using external sources of antioxidants. Synthetic antioxidants such as butylated hydroxytoluene and butylated hydroxyanisole have recently been reported to be harmful for human health. Thus, the search for effective, nontoxic natural compounds with antioxidant activity has been escalated in recent years. The present review provides a brief overview on antioxidants and natural sources of antioxidants in the management of human diseases. Keywords: free radical, Oxidative stress, antioxidants,


2020 ◽  
Vol 2020 (5) ◽  
pp. 27-30
Author(s):  
Natal'ya Mitrohina

Oxidative stress is a pathological accumulation of free radicals that contribute to the launch of intracellular damaging action mechanisms. Free radical is an atom possessing free or missing electron, and seeking to restore the lost electron, taking it from other molecules ― as a result a new free radical is formed. The mechanism is chain reaction-based. Hypoxia acts as an additional stimulus to the appearance of oxygen free radicals. Cell hypoxia develops following any type of cell damage: mechanical, bacteriological, chemical, etc. Cell hypoxia inevitably leads to the development of an inflammatory reaction, which is followed by the formation of oxygen free radicals and, as a result, by oxidative stress development.


Author(s):  
Abishek B. Santhakumar ◽  
Indu Singh

In the recent years, there has been a great deal of attention in investigating the disease preventive properties of functional foods. Particularly, impact of the antioxidant property of functional foods in reducing the risk or progression of chronic diseases has gained considerable interest amongst researchers and practitioners. Free radicals such as reactive oxygen species are generated in the body by exposure to a number of physiochemical or pathological mechanisms. It is imperative to preserve a balance between the levels of free radicals and antioxidants for routine physiological function, a disparity of which would accelerate oxidative stress. Increased oxidative stress and associated consequences in metabolic disorders such as obesity, cardiovascular diseases and diabetes has warranted the need for exogenous antioxidant concentrates derived from natural foods to alleviate the adverse effects. This chapter provides an overview on the efficacy of functional foods in reducing free radical-mediated damage in metabolic syndrome.


2021 ◽  
Author(s):  
Manju Singh Makhaik ◽  
Arvind K. Shakya ◽  
Raosaheb Kale

Since time immemorial, plants are used as the source of food and medicine. It can be traced back to the start of humanity. Bringing plant-based food, such as fruits, vegetables, and whole grains, rich in phytochemicals, with beneficial nutrients, opens the door for healthy living. The health benefits are partly attributed to the compounds which possess antioxidants. Several epidemiological observations have shown an opposite relationship between consumption of plant-based foods, rich in phytochemicals, and many diseases including cancer. The majority of the ailments are related to oxidative stress induced by free radicals. Free radicals are extremely unstable with a very short half-life, highly reactive molecule which leads to oxidative damage to macromolecules such as proteins, DNA, and lipids. Free radical induced cellular inflammation appears to be a major contributing factor to cause aging, and degenerative diseases such as cancer, cardiovascular diseases, diabetes, hepatic diseases, renal ailments, and brain dysfunction. Free radicals have been caught up in the pathogenesis of several diseases. Providentially, free radical formation is controlled naturally by phytochemicals, through their antioxidant potential which plays a key role in preventing many diseases including cancer by suppressing oxidative stress-induced DNA damage. Keeping these facts in mind, an attempt has been made to highlight the oxidative stress, enzymatic and non-enzymatic antioxidant, dietary phytochemicals and their role of in disease prevention and cure.


Sign in / Sign up

Export Citation Format

Share Document