scholarly journals An amino-terminal point mutation increases EAAT2 anion currents without affecting glutamate transport rates

2020 ◽  
Vol 295 (44) ◽  
pp. 14936-14947
Author(s):  
Bettina Kolen ◽  
Daniel Kortzak ◽  
Arne Franzen ◽  
Christoph Fahlke

Excitatory amino acid transporters (EAATs) are prototypical dual function proteins that function as coupled glutamate/Na+/H+/K+ transporters and as anion-selective channels. Both transport functions are intimately intertwined at the structural level: Secondary active glutamate transport is based on elevator-like movements of the mobile transport domain across the membrane, and the lateral movement of this domain results in anion channel opening. This particular anion channel gating mechanism predicts the existence of mutant transporters with changed anion channel properties, but without alteration in glutamate transport. We here report that the L46P mutation in the human EAAT2 transporter fulfills this prediction. L46 is a pore-forming residue of the EAAT2 anion channels at the cytoplasmic entrance into the ion conduction pathway. In whole-cell patch clamp recordings, we observed larger macroscopic anion current amplitudes for L46P than for WT EAAT2. Rapid l-glutamate application under forward transport conditions demonstrated that L46P does not reduce the transport rate of individual transporters. In contrast, changes in selectivity made gluconate permeant in L46P EAAT2, and nonstationary noise analysis revealed slightly increased unitary current amplitudes in mutant EAAT2 anion channels. We used unitary current amplitudes and individual transport rates to quantify absolute open probabilities of EAAT2 anion channels from ratios of anion currents by glutamate uptake currents. This analysis revealed up to 7-fold increased absolute open probability of L46P EAAT2 anion channels. Our results reveal an important determinant of the diameter of EAAT2 anion pore and demonstrate the existence of anion channel gating processes outside the EAAT uptake cycle.

2020 ◽  
Author(s):  
Bettina M I Mertens ◽  
Daniel Kortzak ◽  
Arne Franzen ◽  
Christoph Fahlke

ABSTRACTExcitatory amino acid transporters (EAATs) are prototypic dual function proteins that function as coupled glutamate/Na+/H+/K+ transporters and as anion-selective channels. Both transport functions are intimately intertwined at the structural level: secondary active glutamate transport is based on elevator-like movements of the mobile transport domain across the membrane, and the lateral movement of this domain results in anion channel opening. This particular anion channel gating mechanism predicts the existence of mutant transporters with changed anion channel properties, but without alteration in glutamate transport. We here report that the L46P mutation in the human EAAT2 transporter fulfils this prediction. L46 is a pore-forming residue of the EAAT2 anion channels at the cytoplasmic entrance into the ion conduction pathway. In whole-cell patch clamp recordings, we observed larger macroscopic anion current amplitudes for L46P than for WT EAAT2. Moreover, changes in selectivity made gluconate permeant in L46P EAAT2. Non-stationary noise analysis revealed unchanged unitary current amplitudes in mutant EAAT2 anion channels. Rapid L-glutamate application under forward transport conditions demonstrated that L46P does not reduce the transport rate of individual transporters. Since individual transport rates and unitary anion current amplitudes are unaffected, absolute open probabilities of EAAT2 anion channels were quantified as ratio of anion currents by glutamate uptake currents. We found up to sevenfold increased absolute open probability of L46P EAAT2 anion channels. Our results reveal an important determinant of the diameter of EAAT2 anion pore and demonstrate the existence of anion channel gating processes outside the EAAT uptake cycle.


2011 ◽  
Vol 286 (27) ◽  
pp. 23780-23788 ◽  
Author(s):  
Jan-Philipp Machtens ◽  
Peter Kovermann ◽  
Christoph Fahlke

EAAT glutamate transporters do not only function as secondary-active glutamate transporters but also as anion channels. EAAT anion channel activity depends on transport substrates. For most isoforms, it is negligible without external Na+ and increased by external glutamate. We here investigated gating of EAAT4 anion channels with various cations and amino acid substrates using patch clamp experiments on a mammalian cell line. We demonstrate that Li+ can substitute for Na+ in supporting substrate-activated anion currents, albeit with changed voltage dependence. Anion currents were recorded in glutamate, aspartate, and cysteine, and distinct time and voltage dependences were observed. For each substrate, gating was different in external Na+ or Li+. All features of voltage-dependent and substrate-specific anion channel gating can be described by a simplified nine-state model of the transport cycle in which only amino acid substrate-bound states assume high anion channel open probabilities. The kinetic scheme suggests that the substrate dependence of channel gating is exclusively caused by differences in substrate association and translocation. Moreover, the voltage dependence of anion channel gating arises predominantly from electrogenic cation binding and membrane translocation of the transporter. We conclude that all voltage- and substrate-dependent conformational changes of the EAAT4 anion channel are linked to transitions within the transport cycle.


1989 ◽  
Vol 93 (3) ◽  
pp. 385-410 ◽  
Author(s):  
G D Hals ◽  
P G Stein ◽  
P T Palade

Previously undescribed high conductance single anion channels from frog skeletal muscle sarcoplasmic reticulum (SR) were studied in native membrane using the "sarcoball" technique (Stein and Palade, 1988). Excised inside-out patches recorded in symmetrical 200 mM TrisCl show the conductance of the channel's predominant state was 505 +/- 25 pS (n = 35). From reversal potentials, the Pcl/PK ratio was 45. The slope conductance vs. Cl- ion concentration curve saturates at 617 pS, with K0.5 estimated at 77 mM. The steady-state open probability (Po) vs. holding potential relationship produces a bell-shaped curve, with Po values reaching a maximum near 1.0 at 0 mV, and falling off to 0.05 at +/- 25 mV. Kinetic analysis of the voltage dependence reveals that while open time constants are decreased somewhat by increases in potential, the largest effect is an increase in long closed times. Despite the channel's high conductance, it maintains a moderate selectivity for smaller anions, but will not pass larger anions such as gluconate, as determined by reversal-potential shifts. At least two substates different from the main open level are distinguishable. These properties are unlike those described for mitochondrial voltage-dependent anion channels or skeletal muscle surface membrane Cl channels and since SR Ca channels are present in equally high density in sarcoball patches, we propose these sarcoball anion channels originate from the SR. Preliminary experiments recording currents from frog SR anion channels fused into liposomes indicate that either biochemical isolation and/or alterations in lipid environment greatly decrease the channel's voltage sensitivity. These results help underline the potential significance of using sarcoballs to study SR channels. The steep voltage sensitivity of the sarcoball anion channel suggests that it could be more actively involved in the regulation of Ca2+ transport by the SR.


2013 ◽  
Vol 289 (3) ◽  
pp. 1815-1824 ◽  
Author(s):  
Nicole Schneider ◽  
Sönke Cordeiro ◽  
Jan-Philipp Machtens ◽  
Simona Braams ◽  
Thomas Rauen ◽  
...  

In the mammalian retina, glutamate uptake is mediated by members of a family of glutamate transporters known as “excitatory amino acid transporters (EAATs).” Here we cloned and functionally characterized two retinal EAATs from mouse, the GLT-1/EAAT2 splice variant GLT-1c, and EAAT5. EAATs are glutamate transporters and anion-selective ion channels, and we used heterologous expression in mammalian cells, patch-clamp recordings and noise analysis to study and compare glutamate transport and anion channel properties of both EAAT isoforms. We found GLT-1c to be an effective glutamate transporter with high affinity for Na+ and glutamate that resembles original GLT-1/EAAT2 in all tested functional aspects. EAAT5 exhibits glutamate transport rates too low to be accurately measured in our experimental system, with significantly lower affinities for Na+ and glutamate than GLT-1c. Non-stationary noise analysis demonstrated that GLT-1c and EAAT5 also differ in single-channel current amplitudes of associated anion channels. Unitary current amplitudes of EAAT5 anion channels turned out to be approximately twice as high as single-channel amplitudes of GLT-1c. Moreover, at negative potentials open probabilities of EAAT5 anion channels were much larger than for GLT-1c. Our data illustrate unique functional properties of EAAT5, being a low-affinity and low-capacity glutamate transport system, with an anion channel optimized for anion conduction in the negative voltage range.


1995 ◽  
Vol 105 (5) ◽  
pp. 643-660 ◽  
Author(s):  
P S Jackson ◽  
K Strange

Swelling-induced loss of organic osmolytes from cells is mediated by an outwardly rectified, volume-sensitive anion channel termed VSOAC (Volume-Sensitive Organic osmolyte/Anion Channel). Similar swelling-activated anion channels have been described in numerous cell types. The unitary conductance and gating kinetics of VSOAC have been uncertain, however. Stationary noise analysis and single-channel measurements have produced estimates for the unitary conductance of swelling-activated, outwardly rectified anion channels that vary by > 15-fold. We used a combination of stationary and nonstationary noise analyses and single-channel measurements to estimate the unitary properties of VSOAC. Current noise was analyzed initially by assuming that graded changes in macroscopic current were due to graded changes in channel open probability. Stationary noise analysis predicts that the unitary conductance of VSOAC is approximately 1 pS at 0 mV. In sharp contrast, nonstationary noise analysis demonstrates that VSOAC is a 40-50 pS channel at +120 mV (approximately 15 pS at 0 mV). Measurement of single-channel events in whole-cell currents and outside-out membrane patches confirmed the nonstationary noise analysis results. The discrepancy between stationary and nonstationary noise analyses and single-channel measurements indicates that swelling-induced current activation is not mediated by a graded increase in channel open probability as assumed initially. Instead, activation of VSOAC appears to involve an abrupt switching of single channels from an OFF state, where channel open probability is zero, to an ON state, where open probability is near unity.


2019 ◽  
Vol 400 (11) ◽  
pp. 1481-1496 ◽  
Author(s):  
Lingye Chen ◽  
Benjamin König ◽  
Tianbao Liu ◽  
Sumaira Pervaiz ◽  
Yasmin S. Razzaque ◽  
...  

Abstract The volume-regulated anion channel (VRAC) is a key player in the volume regulation of vertebrate cells. This ubiquitously expressed channel opens upon osmotic cell swelling and potentially other cues and releases chloride and organic osmolytes, which contributes to regulatory volume decrease (RVD). A plethora of studies have proposed a wide range of physiological roles for VRAC beyond volume regulation including cell proliferation, differentiation and migration, apoptosis, intercellular communication by direct release of signaling molecules and by supporting the exocytosis of insulin. VRAC was additionally implicated in pathological states such as cancer therapy resistance and excitotoxicity under ischemic conditions. Following extensive investigations, 5 years ago leucine-rich repeat-containing family 8 (LRRC8) heteromers containing LRRC8A were identified as the pore-forming components of VRAC. Since then, molecular biological approaches have allowed further insight into the biophysical properties and structure of VRAC. Heterologous expression, siRNA-mediated downregulation and genome editing in cells, as well as the use of animal models have enabled the assessment of the proposed physiological roles, together with the identification of new functions including spermatogenesis and the uptake of antibiotics and platinum-based cancer drugs. This review discusses the recent molecular biological insights into the physiology of VRAC in relation to its previously proposed roles.


Author(s):  
Md Tahjib-Ul-Arif ◽  
Shintaro Munemasa ◽  
Toshiyuki Nakamura ◽  
Yoshimasa Nakamura ◽  
Yoshiyuki Murata

Abstract Cytosolic calcium ([Ca2+]cyt) elevation activates plasma membrane anion channels in guard cells, which is required for stomatal closure. However, involvement of the anion channels in the [Ca2+]cyt elevation remains unclear. We investigated the involvement using Arabidopsis thaliana anion channel mutants, slac1-4 slah3-3 and slac1-4 almt12-1. Extracellular calcium induced stomatal closure in the wild-type plants but not in the anion channel mutant plants whereas extracellular calcium induced [Ca2+]cyt elevation both in the wild-type guard cells and in the mutant guard cells. The peak height and the number of the [Ca2+]cyt spike were lower and larger in the slac1-4 slah3-3 than in the wild-type and the height and the number in the slac1-4 almt12-1 were much lower and much larger than in the wild-type. These results suggest that the anion channels are involved in the regulation of [Ca2+]cyt elevation in guard cells.


1998 ◽  
Vol 275 (3) ◽  
pp. C646-C652 ◽  
Author(s):  
Guy Droogmans ◽  
Jean Prenen ◽  
Jan Eggermont ◽  
Thomas Voets ◽  
Bernd Nilius

We have studied the effects of calix[4]arenes on the volume-regulated anion channel (VRAC) currents in cultured calf pulmonary artery endothelial cells. TS- and TS-TM-calix[4]arenes induced a fast inhibition at positive potentials but were ineffective at negative potentials. Maximal block occurred at potentials between 30 and 50 mV. Lowering extracellular pH enhanced the block and shifted the maximum inhibition to more negative potentials. Current inhibition was also accompanied by an increased current noise. From the analysis of the calix[4]arene-induced noise, we obtained a single-channel conductance of 9.3 ± 2.1 pS ( n = 9) at +30 mV. The voltage- and time-dependent block were described using a model in which calix[4]arenes bind to a site at an electrical distance of 0.25 inside the channel with an affinity of 220 μM at 0 mV. Binding occludes VRAC at moderately positive potentials, but calix[4]arenes permeate the channel at more positive potentials. In conclusion, our data suggest an open-channel block of VRAC by calix[4]arenes that also depends on the protonation of the binding site within the pore.


1999 ◽  
Vol 113 (1) ◽  
pp. 111-124 ◽  
Author(s):  
Hye Kyung Lee ◽  
Keith S. Elmslie

For many neurons, N-type calcium channels provide the primary pathway for calcium influx during an action potential. We investigated the gating properties of single N-type calcium channels using the cell-attached patch technique. With 100 mM Ba2+ in the pipet, mean N-channel open probability (Po, measured over 100 ms) increased with depolarization, but the range at a single voltage was large (e.g., Po at +40 mV ranged from 0.1 to 0.8). The open dwell time histograms were generally well fit by a single exponential with mean open time (τo) increasing from 0.7 ms at +10 mV to 3.1 ms at +40 mV. Shut time histograms were well fit by two exponentials. The brief shut time component (τsh1 = 0.3 ms) did not vary with the test potential, while the longer shut time component (τsh2) decreased with voltage from 18.9 ms at +10 mV to 2.3 ms at +40 mV. Although N-channel Po during individual sweeps at +40 mV was often high (∼0.8), mean Po was reduced by null sweeps, low Po gating, inactivation, and slow activation. The variability in mean Po across patches resulted from differences in the frequency these different gating processes were expressed by the channels. Runs analysis showed that null sweeps tended to be clustered in most patches, but that inactivating and slowly activating sweeps were generally distributed randomly. Low Po gating (Po = 0.2, τo = 1 ms at +40 mV) could be sustained for ∼1 min in some patches. The clustering of null sweeps and sweeps with low Po gating is consistent with the idea that they result from different modes of N-channel gating. While Po of the main N-channel gating state is high, the net Po is reduced to a maximum value of close to 0.5 by other gating processes.


2005 ◽  
Vol 125 (5) ◽  
pp. 465-481 ◽  
Author(s):  
Ya-Chin Yang ◽  
Chung-Chin Kuo

The Na+ channel is the primary target of anticonvulsants carbamazepine, phenytoin, and lamotrigine. These drugs modify Na+ channel gating as they have much higher binding affinity to the inactivated state than to the resting state of the channel. It has been proposed that these drugs bind to the Na+ channel pore with a common diphenyl structural motif. Diclofenac is a widely prescribed anti-inflammatory agent that has a similar diphenyl motif in its structure. In this study, we found that diclofenac modifies Na+ channel gating in a way similar to the foregoing anticonvulsants. The dissociation constants of diclofenac binding to the resting, activated, and inactivated Na+ channels are ∼880 μM, ∼88 μM, and ∼7 μM, respectively. The changing affinity well depicts the gradual shaping of a use-dependent receptor along the gating process. Most interestingly, diclofenac does not show the pore-blocking effect of carbamazepine on the Na+ channel when the external solution contains 150 mM Na+, but is turned into an effective Na+ channel pore blocker if the extracellular solution contains no Na+. In contrast, internal Na+ has only negligible effect on the functional consequences of diclofenac binding. Diclofenac thus acts as an “opportunistic” pore blocker modulated by external but not internal Na+, indicating that the diclofenac binding site is located at the junction of a widened part and an acutely narrowed part of the ion conduction pathway, and faces the extracellular rather than the intracellular solution. The diclofenac binding site thus is most likely located at the external pore mouth, and undergoes delicate conformational changes modulated by external Na+ along the gating process of the Na+ channel.


Sign in / Sign up

Export Citation Format

Share Document