scholarly journals Gating of Single N-type Calcium Channels Recorded from Bullfrog Sympathetic Neurons

1999 ◽  
Vol 113 (1) ◽  
pp. 111-124 ◽  
Author(s):  
Hye Kyung Lee ◽  
Keith S. Elmslie

For many neurons, N-type calcium channels provide the primary pathway for calcium influx during an action potential. We investigated the gating properties of single N-type calcium channels using the cell-attached patch technique. With 100 mM Ba2+ in the pipet, mean N-channel open probability (Po, measured over 100 ms) increased with depolarization, but the range at a single voltage was large (e.g., Po at +40 mV ranged from 0.1 to 0.8). The open dwell time histograms were generally well fit by a single exponential with mean open time (τo) increasing from 0.7 ms at +10 mV to 3.1 ms at +40 mV. Shut time histograms were well fit by two exponentials. The brief shut time component (τsh1 = 0.3 ms) did not vary with the test potential, while the longer shut time component (τsh2) decreased with voltage from 18.9 ms at +10 mV to 2.3 ms at +40 mV. Although N-channel Po during individual sweeps at +40 mV was often high (∼0.8), mean Po was reduced by null sweeps, low Po gating, inactivation, and slow activation. The variability in mean Po across patches resulted from differences in the frequency these different gating processes were expressed by the channels. Runs analysis showed that null sweeps tended to be clustered in most patches, but that inactivating and slowly activating sweeps were generally distributed randomly. Low Po gating (Po = 0.2, τo = 1 ms at +40 mV) could be sustained for ∼1 min in some patches. The clustering of null sweeps and sweeps with low Po gating is consistent with the idea that they result from different modes of N-channel gating. While Po of the main N-channel gating state is high, the net Po is reduced to a maximum value of close to 0.5 by other gating processes.

2020 ◽  
Vol 21 (2) ◽  
pp. 389 ◽  
Author(s):  
Paula Rivas-Ramírez ◽  
Antonio Reboreda ◽  
Lola Rueda-Ruzafa ◽  
Salvador Herrera-Pérez ◽  
J. Antonio Lamas

Bradykinin (BK), a hormone inducing pain and inflammation, is known to inhibit potassium M-currents (IM) and to increase the excitability of the superior cervical ganglion (SCG) neurons by activating the Ca2+-calmodulin pathway. M-current is also reduced by muscarinic agonists through the depletion of membrane phosphatidylinositol 4,5-biphosphate (PIP2). Similarly, the activation of muscarinic receptors inhibits the current through two-pore domain potassium channels (K2P) of the “Tandem of pore-domains in a Weakly Inward rectifying K+ channel (TWIK)-related channels” (TREK) subfamily by reducing PIP2 in mouse SCG neurons (mSCG). The aim of this work was to test and characterize the modulation of TREK channels by bradykinin. We used the perforated-patch technique to investigate riluzole (RIL) activated currents in voltage- and current-clamp experiments. RIL is a drug used in the palliative treatment of amyotrophic lateral sclerosis and, in addition to blocking voltage-dependent sodium channels, it also selectively activates the K2P channels of the TREK subfamily. A cell-attached patch-clamp was also used to investigate TREK-2 single channel currents. We report here that BK reduces spike frequency adaptation (SFA), inhibits the riluzole-activated current (IRIL), which flows mainly through TREK-2 channels, by about 45%, and reduces the open probability of identified single TREK-2 channels in cultured mSCG cells. The effect of BK on IRIL was precluded by the bradykinin receptor (B2R) antagonist HOE-140 (d-Arg-[Hyp3, Thi5, d-Tic7, Oic8]BK) but also by diC8PIP2 which prevents PIP2 depletion when phospholipase C (PLC) is activated. On the contrary, antagonizing inositol triphosphate receptors (IP3R) using 2-aminoethoxydiphenylborane (2-APB) or inhibiting protein kinase C (PKC) with bisindolylmaleimide did not affect the inhibition of IRIL by BK. In conclusion, bradykinin inhibits TREK-2 channels through the activation of B2Rs resulting in PIP2 depletion, much like we have demonstrated for muscarinic agonists. This mechanism implies that TREK channels must be relevant for the capture of information about pain and visceral inflammation.


2001 ◽  
Vol 86 (3) ◽  
pp. 1156-1163 ◽  
Author(s):  
Haoya Liang ◽  
Keith S. Elmslie

Because Ca2+ plays diverse roles in intracellular signaling in neurons, several types of calcium channels are employed to control Ca2+ influx in these cells. Our experiments focus on resolving the paradox of why whole-cell current has not been observed under typical recording conditions for one type of calcium channel that is highly expressed in frog sympathetic neurons. These channels, referred to as Ef-channels, are present in the membrane at a density greater than the channels that carry ∼90% of whole-cell current in low Ba2+; but, Ef-current has not been detected in low Ba2+. Using Ca2+ instead of Ba2+ as the charge carrier, we recorded a possible E-type current in frog sympathetic neurons. The current was resistant to specific blockers of N-, L-, and P/Q-type calcium channels but was more sensitive to Ni2+ block than was N- or L-current. Current amplitude in Ca2+ is slightly greater than that in Ba2+. In 3 mM Ca2+, the current contributed ∼12% of total current at peak voltage and increased at voltages more hyperpolarized to the peak, reaching ∼40% at −30 mV, where whole-cell current starts to activate. The presence of Ef-current in 3 mM Ca2+ suggests a potential role for Ef-channels in regulating calcium influx into sympathetic neurons.


1998 ◽  
Vol 79 (6) ◽  
pp. 3012-3018 ◽  
Author(s):  
William H. Baldridge ◽  
Dmitri E. Kurennyi ◽  
Steven Barnes

Baldridge, William H., Dmitri E. Kurennyi, and Steven Barnes. Calcium-sensitive calcium influx in photoreceptor inner segments. J. Neurophysiol. 79: 3012–3018, 1998. The effect of external calcium concentration ([Ca2+]o) on membrane potential–dependent calcium signals in isolated tiger salamander rod and cone photoreceptor inner segments was investigated with patch-clamp and calcium imaging techniques. Mild depolarizations led to increases in intracellular Ca2+ levels ([Ca2+]i) that were smaller when [Ca2+]o was elevated to 10 mM than when it was 3 mM, even though maximum Ca2+ conductance increased 30% with the increase in [Ca2+]o. When external calcium was lowered to 1 mM [Ca2+]o, maximum Ca2+ conductance was reduced, as expected, but the mild depolarization-induced increase in [Ca2+]i was larger than in 3 mM [Ca2+]o. In contrast, when photoreceptors were strongly depolarized, the increase in [Ca2+]i was less when [Ca2+]o was reduced. An explanation for these observations comes from an assessment of Ca2+ channel gating in voltage-clamped photoreceptors under changing conditions of [Ca2+]o. Although Ca2+ conductance increased with increasing [Ca2+]o, surface charge effects dictated large shifts in the voltage dependence of Ca2+ channel gating. Relative to the control condition (3 mM [Ca2+]o), 10 mM [Ca2+]o shifted Ca2+ channel activation 8 mV positive, reducing channel open probability over a broad range of potentials. Reducing [Ca2+]o to 1 mM reduced Ca2+ conductance but shifted Ca2+ channel activation negative by 6 mV. Thus the intracellular calcium signals reflect a balance between competing changes in gating and permeation of Ca2+ channels mediated by [Ca2+]o. In mildly depolarized cells, the [Ca2+]o-induced changes in Ca2+ channel activation proved stronger than the [Ca2+]o-induced changes in conductance. In response to the larger depolarizations caused by 80 mM [K+]o, the opposite is true, with conductance changes dominating the effects on channel activation.


1997 ◽  
Vol 78 (6) ◽  
pp. 2966-2974 ◽  
Author(s):  
Dawn Shepherd ◽  
Paul Brehm

Shepherd, Dawn and Paul Brehm. Two types of ACh receptors contribute to fast channel gating on mouse skeletal muscle. J. Neurophysiol. 78: 2966–2974, 1997. Single-channel recordings from mouse C2 myotubes indicate that maturation of skeletal muscle is accompanied by the appearance of two types of fast acetylcholine (ACh) receptor channels that are each functionally distinct from the embryonic receptor type present at early stages of differentiation. The embryonic receptor type has a low conductance (45 pS) and long channel open time, rendering slowly decaying synaptic currents. One fast channel type that appears during muscle maturation is distinguished from the embryonic receptor type on the basis of both higher conductance (65 pS) and shorter open time. However, single-channel recordings from differentiated mouse skeletal muscle cell line (C2) point to the existence of a second fast receptor type, which has a conductance similar to the embryonic receptor type (45 pS), yet significantly reduced mean channel open time. Analyses of individual channel function at high ACh concentrations directly demonstrate the coexistence of two kinetically distinct types of 45 pS ACh receptors. Openings by fast type and slow embryonic type of 45 pS receptors occurred in bursts, allowing distinction on the basis of both mean open time and open probability for individual receptors. The embryonic type of 45 pS receptor has an open time approximately twofold longer than the fast-receptor counterpart. Additional differences were reflected in the open probability distributions for fast and slow 45 pS receptor types. Both types of 45 pS receptor were kinetically distinguishable from the 65 pS receptor. We found no support for the idea that the slow and fast 45 pS receptor types result from the interconversion of dual gating modes involving the same receptor protein. Our results are consistent with the idea that the acquisition of fast synaptic current decay, required at mature neuromuscular synapses, is the result of the up-regulation of two distinct fast types of nicotinic ACh receptors during skeletal muscle development.


2014 ◽  
Vol 306 (3) ◽  
pp. H455-H461 ◽  
Author(s):  
Antao Luo ◽  
Jihua Ma ◽  
Yejia Song ◽  
Chunping Qian ◽  
Ying Wu ◽  
...  

An increase of cardiac late sodium current ( INa.L) is arrhythmogenic in atrial and ventricular tissues, but the densities of INa.L and thus the potential relative contributions of this current to sodium ion (Na+) influx and arrhythmogenesis in atria and ventricles are unclear. In this study, whole-cell and cell-attached patch-clamp techniques were used to measure INa.L in rabbit left atrial and ventricular myocytes under identical conditions. The density of INa.L was 67% greater in left atrial (0.50 ± 0.09 pA/pF, n = 20) than in left ventricular cells (0.30 ± 0.07 pA/pF, n = 27, P < 0.01) when elicited by step pulses from −120 to −20 mV at a rate of 0.2 Hz. Similar results were obtained using step pulses from −90 to −20 mV. Anemone toxin II (ATX II) increased INa.L with an EC50 value of 14 ± 2 nM and a Hill slope of 1.4 ± 0.1 ( n = 9) in atrial myocytes and with an EC50 of 21 ± 5 nM and a Hill slope of 1.2 ± 0.1 ( n = 12) in ventricular myocytes. Na+ channel open probability (but not mean open time) was greater in atrial than in ventricular cells in the absence and presence of ATX II. The INa.L inhibitor ranolazine (3, 6, and 9 μM) reduced INa.L more in atrial than ventricular myocytes in the presence of 40 nM ATX II. In summary, rabbit left atrial myocytes have a greater density of INa.L and higher sensitivities to ATX II and ranolazine than rabbit left ventricular myocytes.


2001 ◽  
Vol 204 (2) ◽  
pp. 367-378 ◽  
Author(s):  
K.R. O'Connor ◽  
K.W. Beyenbach

Stellate cells of Aedes aegypti Malpighian tubules were investigated using patch-clamp methods to probe the route of transepithelial Cl(−) secretion. Two types of Cl(−) channel were identified in excised, inside-out apical membrane patches. The first Cl(−) channel, type I, had a conductance of 24 pS, an open probability of 0.816+/−0.067, an open time of 867+/−114 ms (mean +/− s.e.m., four patches) and the selectivity sequence I(−)&gt;Cl(−)(much greater than) isethionate&gt;gluconate. The I(−)/Cl(−)&gt;&gt;isethionate&gt;gluconate. The I(−)Cl(−) permeability ratio was 1.48, corresponding to Eisenman sequence I. The type I Cl(−) channel was blocked by 2,2′-iminodibenzoic acid (DPC) and niflumic acid (2-[3-(trifluoromethyl)anilo]nicotinic acid). The removal of Ca(2+) from the Ringer's solution on the cytoplasmic side had no effect on channel activity. The second Cl(−) channel, type II, had a conductance of 8 pS, an open probability of 0.066+/−0.021 and an open time of 7.53+/−1.46 ms (mean +/− s.e.m., four patches). The high density and halide selectivity sequence of the type I Cl(−) channel is consistent with a role in transepithelial Cl(−) secretion under control conditions, but it remains to be determined whether these Cl(−) channels also mediate transepithelial Cl(−) secretion under diuretic conditions in the presence of leucokinin.


2001 ◽  
Vol 280 (4) ◽  
pp. R968-R975 ◽  
Author(s):  
Michelle Rapacon-Baker ◽  
Fan Zhang ◽  
Michael L. Pucci ◽  
Hui Guan ◽  
Alberto Nasjletti

We investigated the effect of intraluminal pressure or stretch on the development of tone in the descending thoracic aorta from rats with aortic coarctation-induced hypertension of 7–14 days duration. Increments of pressure >100 mmHg decreased the diameter of thoracic aortas from hypertensive but not from normotensive rats. The pressure-induced constriction was not demonstrable in vessels superfused with calcium-free buffer. Stretched rings of aorta from hypertensive rats exhibited a calcium-dependent constrictor tone accompanied by elevated calcium influx that varied in relation to the degree of stretch. Blockers of l-type calcium channels and inhibitors of protein kinase C reduced both basal tone and calcium influx in aortic rings of hypertensive rats. Hence, the thoracic aorta of hypertensive rats expresses a pressure- and stretch-activated constrictor mechanism that relies on increased calcium influx throughl-type calcium channels via a protein kinase C-regulated pathway. The expression of such a constrictor mechanism is suggestive of acquired myogenic behavior.


Biochimie ◽  
2011 ◽  
Vol 93 (12) ◽  
pp. 2075-2079 ◽  
Author(s):  
Thierry Capiod

2016 ◽  
Vol 124 (4) ◽  
pp. 878-884 ◽  
Author(s):  
Liping Han ◽  
Stephen Fuqua ◽  
Quanlin Li ◽  
Liyu Zhu ◽  
Xiaoyan Hao ◽  
...  

Abstract Background Propofol (2,6-diisopropylphenol) is one of the most frequently used anesthetic agents. One of the main side effects of propofol is to reduce blood pressure, which is thought to occur by inhibiting the release of catecholamines from sympathetic neurons. Here, the authors hypothesized that propofol-induced hypotension is not simply the result of suppression of the release mechanisms for catecholamines. Methods The authors simultaneously compared the effects of propofol on the release of norepinephrine triggered by high K+-induced depolarization, as well as ionomycin, by using neuroendocrine PC12 cells and synaptosomes. Ionomycin, a Ca2+ ionophore, directly induces Ca2+ influx, thus bypassing the effect of ion channel modulation by propofol. Results Propofol decreased depolarization (high K+)-triggered norepinephrine release, whereas it increased ionomycin-triggered release from both PC12 cells and synaptosomes. The propofol (30 μM)-induced increase in norepinephrine release triggered by ionomycin was dependent on both the presence and the concentration of extracellular Ca2+ (0.3 to 10 mM; n = 6). The enhancement of norepinephrine release by propofol was observed in all tested concentrations of ionomycin (0.1 to 5 μM; n = 6). Conclusions Propofol at clinically relevant concentrations promotes the catecholamine release as long as Ca2+ influx is supported. This unexpected finding will allow for a better understanding in preventing propofol-induced hypotension.


Sign in / Sign up

Export Citation Format

Share Document