The impact of hybrid dairy systems on air, soil and water quality: focus on nitrogen and phosphorus cycling.

Author(s):  
P. J. A. Kleinman ◽  
K. Soder
2020 ◽  
Vol 12 (12) ◽  
pp. 5026 ◽  
Author(s):  
Jialu Li ◽  
Qiting Zuo

Suspended solids are an important part of lake ecosystems, and their nitrogen and phosphorus contents have a significant effect on water quality. However, information on nitrogen and phosphorus forms in suspended solids remains limited. Therefore, a case study was conducted in Lihu Lake (China), a lake with characteristically high amounts of suspended solids. Nitrogen and phosphorus speciation in suspended solids was analyzed through a sequential extraction method. We also evaluated the sources of various forms of nitrogen and phosphorus and their different effects on eutrophication. The total nitrogen (TN) content was 758.9–3098.1 mg/kg. Moreover, the proportions of various N forms in the suspended solids of the study areas were ranked as follows: Hydrolyzable nitrogen (HN) > residual nitrogen (RN) > exchangeable nitrogen (EN). Total phosphorus (TP) ranged from 294.8 to 1066.4 mg/kg, and 58.6% of this TP was inorganic phosphorus (IP). In turn, calcium (Ca)-bound inorganic phosphorus (Ca-Pi) was the main component of IP. The correlation between various nitrogen and phosphorus forms showed that there were different sources of suspended nitrogen and phosphorus throughout Lihu Lake. Correlation analysis of water quality indices and comparative analysis with surface sediments showed that in Lihu Lake, the dissolved nitrogen and phosphorus contents in water were influenced by sediment through diffusion, while particle phosphorus content in water was influenced by suspended solids through adsorption; however, due to the higher phosphorus contents in suspended solids, we should pay more attention to the impact of suspended solids.


2014 ◽  
Vol 69 (9) ◽  
pp. 1961-1969 ◽  
Author(s):  
Bonnie J. Glaister ◽  
Tim D. Fletcher ◽  
Perran L. M. Cook ◽  
Belinda E. Hatt

Biofilters have been shown to effectively treat stormwater and achieve nutrient load reduction targets. However, effluent concentrations of nitrogen and phosphorus typically exceed environmental targets for receiving water protection. This study investigates the role of filter media, vegetation and a saturated zone (SZ) in achieving co-optimised nitrogen and phosphorus removal in biofilters. Twenty biofilter columns were monitored over a 12-month period of dosing with semi-synthetic stormwater. The frequency of dosing was altered seasonally to examine the impact of hydrologic variability. Very good nutrient removal (90% total phosphorus, 89% total nitrogen) could be achieved by incorporating vegetation, an SZ and Skye sand, a naturally occurring iron-rich filter medium. This design maintained nutrient removal at or below water quality guideline concentrations throughout the experiment, demonstrating resilience to wetting–drying fluctuations. The results also highlighted the benefit of including an SZ to maintain treatment performance over extended dry periods. These findings represent progress towards designing biofilters which co-optimise nitrogen and phosphorus removal and comply with water quality guidelines.


2010 ◽  
Vol 28 (4) ◽  
pp. 209-217 ◽  
Author(s):  
Sarah A. White ◽  
Milton D. Taylor ◽  
Stewart L. Chandler ◽  
Ted Whitwell ◽  
Stephen J. Klaine

Abstract Agricultural operations face increasing pressure to remediate runoff to reduce deterioration of surface water quality. Some nursery operations use free water surface constructed wetland systems (CWSs) to remediate nutrient-rich runoff. Our objectives were twofold, first to examine the impact of two hydraulic retention times (HRT, 3.5 and 5.5 day) on CWS performance, and second to determine if increased nutrient loading from internal CWS and nursery sources during the spring contributed to nutrient export in excess of regulatory limits. We quantified nutrient loading and removal efficiency in a free water surface CWS from late winter through late spring over three years and monitored various water quality parameters. Total nitrogen in runoff was reduced from 20.6 ± 2.8 mg·liter−1 (ppm) to 4.1 ± 1.3 mg·liter−1 (ppm) nitrogen after CWS treatment. Phosphorus dynamics in the CWS were more variable and unlike nitrogen dynamics were not consistently influenced by water temperature and hydraulic loading rate. Phosphorus concentrations were reduced from 1.7 ± 0.8 mg·liter−1 (ppm) PO4-P in influent to 1.2 ± 0.6 mg·liter−1 (ppm) PO4-P in CWS effluent, but substantial variability existed among years in both phosphorus loading and removal rates. The CWS was able to efficiently remediate nitrogen even under high spring loading rates.


2009 ◽  
Vol 8 (2) ◽  
pp. 326-333 ◽  
Author(s):  
Robert W. Derlet ◽  
Charles R. Goldman ◽  
Michael J. Connor

The Sierra Nevada Mountain range serves as an important source of drinking water for the State of California. However, summer cattle grazing on federal lands affects the overall water quality yield from this essential watershed as cattle manure is washed into the lakes and streams or directly deposited into these bodies of water. This organic pollution introduces harmful microorganisms and also provides nutrients such as nitrogen and phosphorus which increase algae growth causing eutrophication of otherwise naturally oligotrophic mountain lakes and streams. Disinfection and filtration of this water by municipal water districts after it flows downstream will become increasingly costly. This will be compounded by increasing surface water temperatures and the potential for toxins release by cyanobacteria blooms. With increasing demands for clean water for a state population approaching 40 million, steps need to be implemented to mitigate the impact of cattle on the Sierra Nevada watershed. Compared to lower elevations, high elevation grazing has the greatest impact on the watershed because of fragile unforgiving ecosystems. The societal costs from non-point pollution exceed the benefit achieved through grazing of relatively few cattle at the higher elevations. We propose limiting summer cattle grazing on public lands to lower elevations, with a final goal of allowing summer grazing on public lands only below 1,500 m elevation in the Central and Northern Sierra and 2,000 m elevation in the Southern Sierra.


Author(s):  
R.W. Mcdowell ◽  
N. Mcgrouther ◽  
G. Morgan ◽  
M.S. Srinivasan ◽  
D.R. Stevens ◽  
...  

Research on the soil and water quality of deer farms is minimal. However, the perception is that many deer operations may be detrimental to soil and water quality. To address this problem two deer focus farms (DFF, 1 each in Otago and Southland) were established to showcase how productivity and environmental objectives can coincide. Managements implemented by the farmers included a sedimentation pond, fencing off waterways and retiring land under a QEII covenant. A detailed soil and water quality testing regime occurred for each farm: data were collected at the Southland DFF for three tributaries (one fenced off, one partially fenced and one unfenced) which fed into a stream and through a tussock covered area retired from grazing. Water quality in the unfenced and partially fenced tributaries was poor with no water quality parameters meeting ANZECC guidelines, whereas water quality in the fenced-off and planted tributary was better. Water exiting the retired area met ANZECC guidelines. Although water quality on parts of both deer farms did not meet ANZECC guidelines, when management practices such as fencing off and the creation of a pond were used water quality improved. More importantly, an area retired from grazing and further development on the Southland DFF showed that water quality could be significantly improved and could be better than that entering the farm. Keywords: fencing-off, QEII covenant, sedimentation pond, water quality


2004 ◽  
Vol 55 (6) ◽  
pp. 581 ◽  
Author(s):  
L. C. Radke ◽  
I. P. Prosser ◽  
M. Robb ◽  
B. Brooke ◽  
D. Fredericks ◽  
...  

We examine surface sediment and water column total nutrient and chlorophyll a concentrations for 12 estuaries with average water depths <4 m, and calculated sediment loads ranging from 0.2 to 10.8 kg m−2 year−1. Sediment total nitrogen, phosphorus and organic carbon concentrations vary inversely with sediment loads due to: (i) the influx of more mineral-rich sediment into the estuaries; and (ii) increasing sediment sulfidation. Sediment total organic carbon (TOC) : total sulfur (TS) and TS : Fe(II) ratios correlated to sediment loads because enhanced sedimentation increases burial, hence the importance of sulfate reduction in organic matter degradation. Curvilinear relationships were found between a weathering index and organic matter δ13C in sediment, and sediment load. The rising phase of the curve (increasing weathering, lighter isotopic values) at low to intermediate loads relates to soil erosion, whereas regolith or bedrock erosion probably explains the declining phase of the curve (decreasing weathering, heavier isotopic values) at higher sediment loads. The pattern of change for water column total nutrients (nitrogen and phosphorus) with sediment loads is similar to that of the weathering index. Most water quality problems occur in association with soil erosion, and at sediment loads that are intermediate for the estuaries studied. Limited evidence is presented that flushing can moderate the impact of sediment loads upon the estuaries.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1518 ◽  
Author(s):  
Alexis Rodríguez-Romero ◽  
Axel Rico-Sánchez ◽  
Erick Mendoza-Martínez ◽  
Andrea Gómez-Ruiz ◽  
Jacinto Sedeño-Díaz ◽  
...  

Worldwide, it is acknowledged that changes of land use influence water quality; however, in tropical forests, the relationship between land use and water quality is still poorly understood. This study assessed spatial and seasonal variations in water quality, and the relationship between water quality and changes of land use in the Bobos-Nautla River, whose upper course runs across a patch of a tropical cloud forest. Spatial and seasonal variations in water quality and land use were assessed with multivariate tools. A cluster analysis, as well as a Principal Component Analysis (PCA-3D), identified three groups of sites: (1) an upper portion, which showed the best water quality and the broadest natural vegetation coverage; (2) a middle course, with high nitrogen and phosphorus concentrations associated with extensive agricultural uses; and (3) a lower course, characterized by the highest levels of total and fecal coliforms, as well as ammonia nitrogen, associated with the highest percentage of urbanization and human settlements. Our findings demonstrate the impact of changes of land use on water quality of rivers running through cloud forests in tropical zones, which are currently endangered ecosystems.


Author(s):  
Devendra Podhade ◽  
S. B. Lal ◽  
Somesh Singh ◽  
B. Mehera ◽  
Nee lam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document