The use of visible (VIS) and near infrared (NIR) reflectance spectroscopy to predict fibre diameter in both clean and greasy wool samples

2005 ◽  
Vol 80 (3) ◽  
pp. 333-337 ◽  
Author(s):  
D. Cozzolino ◽  
F. Montossi ◽  
R. San Julian

AbstractAbstract Visible (VIS) and near infrared (NIR) reflectance spectroscopy combined with multivariate data analysis were explored to predict fibre diameter in both clean and greasy Merino wool samples. Fifty clean and 400 greasy wool samples were analysed. Samples were scanned in a large cuvette using a NIRSystems 6500 monochromator instrument by reflectance in the VIS and NIR regions (400 to 2500 nm). Partial least square (PLS) regression was used to develop a number of calibration models between the spectral and reference data. Different mathematical treatments were used during model development. Cross validation was used to assess the performance and avoid overfitting of the models. The NIR calibration models gave a coefficient of determination in calibration (R2) > 0·90 for clean wool samples and a R2 < 0·50 for greasy wool samples. The values for the residual predictive value, RPD (ratio of standard deviation (s. d.) to the root mean square of the standard error of cross validation (RMSECV)) were 3 for clean and 0·6 for greasy wool samples, respectively. The results indicated that fibre diameter in greasy wool samples was poorly predicted with NIR, while clean wool showed good relationships.More research is required to improve the calibration on greasy wool samples if the technology is to be used for rapid analysis to assist in the selection of animals in breeding programmes.

2002 ◽  
Vol 10 (4) ◽  
pp. 309-314 ◽  
Author(s):  
D. Cozzolino ◽  
A. La Manna ◽  
D. Vaz Martins

Near infrared (NIR) reflectance spectroscopy was used to predict nitrogen (N), acid detergent fibre (ADF), neutral detergent fibre (NDF) and chromium (Cr) in beef faecal samples. One hundred and twenty faecal samples were scanned in a NIRSystems 6500 monochromator instrument over the wavelength range of 400–2500 nm in reflectance. Calibration equations were developed using modified partial least squares (MPLS) with internal cross validation to avoid overfitting. The coefficient of determination in calibration ( R2cal) and the standard error in cross validation ( SECV) were 0.80 (0.74) for N, 0.92 (12.04) for ADF, 0.86 (13.5) for NDF and 0.56 (0.07) for Cr in g kg−1 dry weight, respectively. Results for validation were 0.78 ( SEP: 0.1) for N, 0.74 ( SEP: 7.5) for ADF, 0.85 ( SEP: 8.5) for NDF and 0.10 (0.09) for Cr in g kg−1 dry weight, respectively.


2020 ◽  
Vol 16 (4) ◽  
Author(s):  
Roya Farhadi ◽  
Amir H. Afkari-Sayyah ◽  
Bahareh Jamshidi ◽  
Ahmad Mousapour Gorji

AbstractVisible/Near-infrared (Vis/NIR) spectroscopy at a range of 450–1000 nm was used to predict the values of three qualitative variables (starch, reducing sugar, and moisture content) on 200 potato tubers from 2 potato genotypes (‘Agria’ and ‘Clone 397009–8’) stored in both traditional and cold storages. After spectroscopy measurements, these variables were measured using reference methods. Then, Partial Least Square (PLS) models were developed. To evaluate developed models, Root Mean Square Error of calibration and cross validation (RMSEC and RMSECV), as well as coefficient of determination for calibration and cross validation (R2C and R2CV), and Residual Predictive Deviation (RPD) were used. The best prediction belonged to reducing sugar with statistical values of R2C = 0.99, R2CV = 0.98, RMSEC = 0.029, RMSECV = 0.037, and RPD = 7.57 in ‘Clone’ genotype stored under cold storage. The weakest prediction was related to moisture content with statistical values of R2C = 0.93, R2CV = 0.92, RMSEC = 0.268, RMSECV = 0.279, and RPD = 6.45 in stored ‘Clone’ genotypes under cold storage. Results of the study showed that, Vis/NIR spectroscopy as a non-destructive, fast, and reliable technique can be used for prediction of inner compositions of stored potatoes.


2018 ◽  
Vol 192 ◽  
pp. 03021 ◽  
Author(s):  
Jetsada Posom ◽  
Jirawat phuphanutada ◽  
Ravipat Lapcharoensuk

The aim of this study was to use the near infrared spectroscopy for predicting the gross calorific value (GCV) and ash content (AC) of recycled sawdust from mushroom cultivation. The wavenumber was in range of 12500-4000 cm-1 with the diffuse reflection mode was used. The NIR models was established using partial least square regression (PLSR) and was validated via using full cross validation. GCV model provided the coefficient of determination (R2), root mean square error of cross validation (RMSECV), ratio of prediction to deviation (RPD), and bias of 0.90, 445 J/g, 3.19 and 4 J/g, respectively. The AC model gave the R2, RMSECV, RPD and bias of 0.83, 1.7000 %wt, 2.44 and 0.0059 %wt, respectively. For prediction of unknow samples, GCV model provided the standard error of prediction (SEP) and bias of 670 J/g and -654 J/g, respectively. The AC model gave the SEP and bias of 1.84 %wt and 0.912 %wt, respectively. The result represented that the GCV and AC model probably used as the rapid method and non-destructive method.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 885
Author(s):  
Sergio Ghidini ◽  
Luca Maria Chiesa ◽  
Sara Panseri ◽  
Maria Olga Varrà ◽  
Adriana Ianieri ◽  
...  

The present study was designed to investigate whether near infrared (NIR) spectroscopy with minimal sample processing could be a suitable technique to rapidly measure histamine levels in raw and processed tuna fish. Calibration models based on orthogonal partial least square regression (OPLSR) were built to predict histamine in the range 10–1000 mg kg−1 using the 1000–2500 nm NIR spectra of artificially-contaminated fish. The two models were then validated using a new set of naturally contaminated samples in which histamine content was determined by conventional high-performance liquid chromatography (HPLC) analysis. As for calibration results, coefficient of determination (r2) > 0.98, root mean square of estimation (RMSEE) ≤ 5 mg kg−1 and root mean square of cross-validation (RMSECV) ≤ 6 mg kg−1 were achieved. Both models were optimal also in the validation stage, showing r2 values > 0.97, root mean square errors of prediction (RMSEP) ≤ 10 mg kg−1 and relative range error (RER) ≥ 25, with better results showed by the model for processed fish. The promising results achieved suggest NIR spectroscopy as an implemental analytical solution in fish industries and markets to effectively determine histamine amounts.


2018 ◽  
Vol 18 (2) ◽  
pp. 376 ◽  
Author(s):  
Wiranti Sri Rahayu ◽  
Abdul Rohman ◽  
Sudibyo Martono ◽  
Sudjadi Sudjadi

Beef meatball is one of the favorite meat-based food products among Indonesian community. Currently, beef is very expensive in Indonesian market compared to other common meat types such as chicken and lamb. This situation has intrigued some unethical meatball producers to replace or adulterate beef with lower priced-meat like dog meat. The objective of this study was to evaluate the capability of FTIR spectroscopy combined with chemometrics for identification and quantification of dog meat (DM) in beef meatball (BM). Meatball samples were prepared by adding DM into BM ingredients in the range of 0–100% wt/wt and were subjected to extraction using Folch method. Lipid extracts obtained from the samples were scanned using FTIR spectrophotometer at 4000–650 cm-1. Partial least square (PLS) calibration was used to quantify DM in the meatball. The results showed that combined frequency regions of 1782–1623 cm-1 and 1485-659 cm-1 using detrending treatment gave optimum prediction of DM in BM. Coefficient of determination (R2) for correlation between the actual value of DM and FTIR predicted value was 0.993 in calibration model and 0.995 in validation model. The root mean square error of calibration (RMSEC) and standard error of cross validation (SECV) were 1.63% and 2.68%, respectively. FTIR spectroscopy combined with multivariate analysis can serve as an accurate and reliable method for analysis of DM in meatball.


Poljoprivreda ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 48-55
Author(s):  
Marina Vranić ◽  
Marko Petek ◽  
Krešimir Bošnjak ◽  
Boris Lazarević ◽  
Klaudija Carović Stanko

In this study, near-infrared spectroscopy (NIRS) was used to predict the contents of essential macro- and microelements in common bean (Phaseolus vulgaris L.) accessions of most widespread Croatian landraces. Total of 175 samples were used for the model development by modified partial least square (MPLS), principal component regression (PCR) and partial least square (PLS) techniques. Based on the coefficients of determination (R2), standard error of calibration (SEC) and error of prediction (SEP) the models developed were (i) nearly applicable for nitrogen (N) (0.89, 0.12 and 0.45 respectively), (ii) poor for iron (Fe), cinc (Zn), potassium oxide (K2O) and potassium (K), (iii) usable for phosphorus pentoxide (P2O5), phosphorus (P), phytic acid (PA) and manganese (Mn). The MPLS regression statistics suggested the most accurate models developed comparing with PLS and PCR. It was concluded that a wider set of common bean samples needs to be used for macro- and microelements prediction by NIRS.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Tadele Amare ◽  
Christian Hergarten ◽  
Hans Hurni ◽  
Bettina Wolfgramm ◽  
Birru Yitaferu ◽  
...  

Soil spectroscopy was applied for predicting soil organic carbon (SOC) in the highlands of Ethiopia. Soil samples were acquired from Ethiopia’s National Soil Testing Centre and direct field sampling. The reflectance of samples was measured using a FieldSpec 3 diffuse reflectance spectrometer. Outliers and sample relation were evaluated using principal component analysis (PCA) and models were developed through partial least square regression (PLSR). For nine watersheds sampled, 20% of the samples were set aside to test prediction and 80% were used to develop calibration models. Depending on the number of samples per watershed, cross validation or independent validation were used. The stability of models was evaluated using coefficient of determination (R2), root mean square error (RMSE), and the ratio performance deviation (RPD). The R2 (%), RMSE (%), and RPD, respectively, for validation were Anjeni (88, 0.44, 3.05), Bale (86, 0.52, 2.7), Basketo (89, 0.57, 3.0), Benishangul (91, 0.30, 3.4), Kersa (82, 0.44, 2.4), Kola tembien (75, 0.44, 1.9), Maybar (84. 0.57, 2.5), Megech (85, 0.15, 2.6), and Wondo Genet (86, 0.52, 2.7) indicating that the models were stable. Models performed better for areas with high SOC values than areas with lower SOC values. Overall, soil spectroscopy performance ranged from very good to good.


2007 ◽  
Vol 15 (2) ◽  
pp. 107-113 ◽  
Author(s):  
A. Fanchone ◽  
M. Boval ◽  
Ph. Lecomte ◽  
H. Archimède

The aim of this study was to evaluate the potential of faecal indices based on near infrared (NIR) spectroscopy to assess chemical composition and functional properties (intake and in vivo digestibility) of fresh grass ingested by sheep. Reference data and faecal spectra were obtained from a pen experiment with 12 ewes individually housed and fed fresh Digitaria decumbens at varying stages of re-growth (14–63 days) during a period of 49 days. The amount of herbage offered, refused and faecal excretion were measured per ewe daily. Organic matter (OM) content, crude protein (CP) content, neutral and acid detergent fibre (NDF, ADF) and acid detergent lignin (ADL) content were dosed in offered, refused and faecal samples. OM digestibility (OMD), intake (OMI) and chemical composition of the herbage ingested (OMi, CPi, NDFi, ADFi, ADLi, % dry matter) were calculated per ewe and per seven days. Faecal samples were bulked within each seven days of measurement period, per ewe. Eighty four dried and milled faecal samples were scanned using a monochromator. Faecal spectra were used to calibrate and cross-validate equations for predicting the various parameters using the modified partial least square (MPLS) procedure. For the CP content of the herbage really ingested (CPi), derived standard error of cross-validation ( SECV) and cross-validation R2 ( R2cv) were 0.61% and 0.98. For NDFi, ADFi and ADLi, the values of SEC-V and R2 cv were, respectively, 1.64% and 0.45, 0.78% and 0.91 and 0.34% and 0.77. For OMD, the values of SECV and R2 cv were 2.02% and 0.77, whereas lower calibrations statistics were obtained for OMI (11.04 g kg BW–0.75 and 0.45). These values confirmed the potential of NIR Spectra of faeces as a technology for reliably predicting the in vivo digestibility and chemical quality of herbage really ingested and estimating the herbage intake by small ruminants.


2015 ◽  
Vol 73 (1) ◽  
Author(s):  
Feri Candra ◽  
Syed Abd. Rahman Abu Bakar

Hyperspectral imaging technology is a powerful tool for non-destructive quality assessment of fruits. The objective of this research was to develop novel calibration model based on hyperspectral imaging to estimate soluble solid content (SSC) of starfruits. A hyperspectral imaging system, which consists of a near infrared  camera, a spectrograph V10, a halogen lighting and a conveyor belt system, was used in this study to acquire hyperspectral  images of the samples in visible and near infrared (500-1000 nm) regions. Partial least square (PLS) was used to build the model and to find the optimal wavelength. Two different masks were applied for obtaining the spectral data. The optimal wavelengths were evaluated using multi linear regression (MLR). The coefficient of determination (R2) for validation using the model with first mask (M1) and second mask (M2) were 0.82 and 0.80, respectively.


2013 ◽  
Vol 740 ◽  
pp. 267-272 ◽  
Author(s):  
Jing Fang Wang

The separate calibration models of aromatics and olefins were established for gasoline through recursive partial least square (R-PLS) method in this paper.The some oil refining enterprise application has achieved better effect on the software being realized by R-PLS method. The calibration models were validated through comparison of the results determined by fluorescent indicator adsorption (FIA) and near infrared spectroscopy (NIR) methods.The NIR analysis results were well coincident with those of FIA method.The NIR can not only raise the analysis efficiency and lower the analysis cost,but also has better precision compared with FIA method.


Sign in / Sign up

Export Citation Format

Share Document