scholarly journals Effects of vitamin E deficiency on total polyunsaturated fatty acids in rats and chicks

1967 ◽  
Vol 21 (1) ◽  
pp. 217-224 ◽  
Author(s):  
J. Bunyan ◽  
A. T. Diplock ◽  
J. Green

1. The total polyunsaturated fatty acid (PUFA) content of tissues of vitamin E-deficient rats and chicks has been measured by the lipoxidase method.2. Vitamin E deficiency did not depress total PUFA in rat liver, kidney, heart, spleen, brain, adrenal and adipose tissue during experimental periods up to 13 months.3. Liver PUFA was not depressed by deficiency of vitamin E and selenium in rats at 9 weeks or 8 months of age.4. Rats given a muscular dystrophy-producing diet (containing oxidized cod-liver oil) showed a severe depletion of PUFA in muscle, but not in kidney or adipose tissue.5. Exudative diathesis induced in chicks by a deficiency of vitamin E and Se did not depress liver PUFA.6. It is considered that in vitamin E deficiency there is no general decrease in PUFA due to peroxidative loss. Changes of a more specific nature occur, as found by other workers.

1967 ◽  
Vol 21 (1) ◽  
pp. 69-101 ◽  
Author(s):  
J. Green ◽  
A. T. Diplock ◽  
J. Bunyan ◽  
D. Mchale ◽  
I. R. Muthy

1. A critical analysis of the biological antioxidant theory of vitamin E function has been made and the implications of the theory have been tested.2. When small amounts of [5-Me-14C]α-tocopherol were present in lipid systems subject to autoxidation in vitro, it was found that, whether the tocopherol was the sole antioxidant or was in synergistic combination with a secondary antioxidant (ascorbic acid), peroxidation did not occur without concomitant destruction of the tocopherol. This was so, whether a simple fat substrate or a liver homogenate (subject to catalysis) was used. The decomposition of tocopherol took place even when the secondary antioxidant was in large excess, as would occur under physiological conditions in the vitamin E-deficient animal, and accelerated as the induction period neared its end.3. When [5-Me-14C,3H]α-tocopherol and ascorbic acid were used as a synergistic antioxidant couple in vitro, tocopherol recovered from the peroxidizing system always had the same isotopic ratio as the starting material. This means that regeneration of tocopherol by the secondary antioxidant cannot involve, as an intermediate, a tocopherol carbon radical formed by loss of hydrogen from the 5-methyl group. Such radicals probably dimerize before they can be regenerated. The same result was found when doubly labelled α-tocopherol was given to the rat and recovered later from its tissues.4. In a series of experiments, rats were rigorously depleted of vitamin E for periods up to 7 months and then given as little as 50 μg [14C]D-α-tocopherol. They were then given, either by stomach tube daily or by dietary addition, large amounts of methyl linoleate or vitamin E-free polyunsaturated fatty acid methyl esters prepared from cod-liver oil and compared with controls given methyl oleate for up to 31 days. When the possibility of interaction between the lipid and tocopherol in the gut was eliminated, analyses of liver, kidney, testis, adrenal, adipose tissue, whole carcass and faeces showed that there was no effect of the polyunsaturated fatty acids on either the metabolism or recovery of [14C]α-tocopherol in any of the animals.5. When interaction between the administered fatty acid esters and tocopherol in the gut was allowed to take place, a marked destruction of [14C]α-tocopherol in the tissues was observed in animals given the polyunsaturated esters. The importance of oxidative destruction of tocopherol in the gut before absorption was demonstrated in a nutritional trial, in which cod-liver oil and lard were compared and the degrees of resistance of rats' erythrocytes to dialuric acid-induced haemolysis was used as an index of vitamin E depletion.6. Similar experiments with [14Cα-tocopherol in weanling rats given large amounts of cod-liver oil methyl esters also showed little effect. Although there was a suggestion that prolonged feeding of partly peroxidized polyunsaturated esters could lead to a slight depression of tissue tocopherol concentrations, no significant differences were usually obtained.7. Fourteen-day-old rats were given a vitamin E-deficient diet and received three weekly doses of 0.5 mg α-tocophcryl acetate. The dosage was stopped, the rats were then given a deficient diet containing 4% of either vitamin E-free linseed oil fatty acids or oleic acid, and the rate of their tocopherol depletion was measured by the erythrocyte haemolysis test. No effect of the polyunsaturated fatty acids was found. Nor was there any effect on the concentrations of ‘secondary antioxidants’ (glutathione and ascorbic acid) in liver, kidney, testis, muscle or adipose tissue.8. The results of the experiments in vivo contrast strongly with those in vitro. They lead to the conclusion that lipid peroxidation, if it occurs in the living animal, is irrelevant to the problem of vitamin E function. This conclusion has been substantiated by a critical review of the literature on the quantitative aspects of the vitamin E-dietary fat relationship.9. The effects of dietary fat stress in vitamin E-deficient animals are, we believe, due to two causes: (1) destruction of tocopherol in the diet or in the gastro-intestinal tract of the animal, and (2) the existence of an increased requirement for vitamin E for the metabolism of certain long-chain fatty acids. The specific effects of certain of these substances in producing or accelerating some vitamin E deficiency diseases may be related to the toxic states known to be induced in vitamin E-deficient animals by other stress factors.


1999 ◽  
Vol 1999 ◽  
pp. 115-115 ◽  
Author(s):  
A.M. Wachira ◽  
L.A. Sinclair ◽  
R.G. Wilkinson ◽  
G. Demirel ◽  
M. Enser ◽  
...  

The benefits of long chain polyunsaturated fatty acids (PUFA) to human health, especially those of the n-3 series are now widely recognised. In a previous experiment (Wachira et al. 1998) supplementing diets with whole linseed or fish oil increased n-3 fatty acid levels in lamb muscle. To raise these further the whole linseed can be treated with formaldehyde to increase protection in the rumen. Dietary antioxidants such as vitamin E can control lipid oxidation but information on their effects on lamb performance and fatty acid composition is limited. The current experiments investigated the effects of different dietary PUFA sources and vitamin E levels on growth and fatty acid composition in two sheep breeds. Detailed results of the effects of vitamin E are presented in the accompanying abstract by Enser et al.


2004 ◽  
Vol 91 (4) ◽  
pp. 551-565 ◽  
Author(s):  
G. Demirel ◽  
A. M. Wachira ◽  
L. A. Sinclair ◽  
R. G. Wilkinson ◽  
J. D. Wood ◽  
...  

The effect of feeding n-3 PUFA on the fatty acid composition of muscle, adipose tissue and liver of lambs was investigated. Groups of eight ram lambs per breed, Suffolk×Lleyn (24kg live weight) and Scottish Blackface (18kg live weight), were each fed one of six diets containing one of three fat sources (50g fatty acids/kg DM; Megalac® (calcium soap of palm fatty acid distillate; Volac Ltd, Royston, Herts., UK) and formaldehyde-treated whole linseed (Trouw Nutrition UK, Northwich, Ches., UK) either alone or with fish oil (1:1, w/w) and either 100 or 500mg α-tocopheryl acetate/kg DM. Feed was offered ad libitum until slaughter at approximately half breed mature live weight. The type of dietary fat had no effect on intake, growth rate or feed conversion ratio. The 3·0-fold higher concentration of 18:3n-3 in the linseed compared with the Megalac® diet approximately doubled (P<0·001) the concentration in the neutral and polar lipid fractions of musculus semimembranosus and liver, and in adipose tissue it increased 2·5-fold. Feeding protected linseed also increased (P<0·001) concentrations of 20:5n-3 and 22:5n-3 in muscle polar lipids and both lipid fractions of liver. The linseed–fish oil raised the 20:5n-3 concentrations above those for the linseed diet and also increased 22:6n-3. Scottish Blackface lambs had lower concentrations of 18:3n-3 in all lipids compared with Suffolk x Lleyn lambs, but more 20:5n-3 in the polar lipids of muscle and liver. High levels of dietary vitamin E were associated with small decreases in the concentration of monounsaturated fatty acids and increases in PUFA. Linseed raised the PUFA:saturated fatty acid ratios in liver and adipose tissue but not in muscle, and improved the n-6:n-3 fatty acid ratio, as did the linseed–fish oil. Different combinations of dietary fatty acids and better protection against rumen biohydrogenation are required to improve muscle PUFA:saturated fatty acids ratios.


1985 ◽  
Vol 54 (03) ◽  
pp. 563-569 ◽  
Author(s):  
M K Salo ◽  
E Vartiainen ◽  
P Puska ◽  
T Nikkari

SummaryPlatelet aggregation and its relation to fatty acid composition of platelets, plasma and adipose tissue was determined in 196 randomly selected, free-living, 40-49-year-old men in two regions of Finland (east and southwest) with a nearly twofold difference in the IHD rate.There were no significant east-southwest differences in platelet aggregation induced with ADP, thrombin or epinephrine. ADP-induced platelet secondary aggregation showed significant negative associations with all C20-C22 ω3-fatty acids in platelets (r = -0.26 - -0.40) and with the platelet 20: 5ω3/20: 4ω 6 and ω3/ ω6 ratios, but significant positive correlations with the contents of 18:2 in adipose tissue (r = 0.20) and plasma triglycerides (TG) (r = 0.29). Epinephrine-induced aggregation correlated negatively with 20: 5ω 3 in plasma cholesteryl esters (CE) (r = -0.23) and TG (r = -0.29), and positively with the total percentage of saturated fatty acids in platelets (r = 0.33), but had no significant correlations with any of the ω6-fatty acids. Thrombin-induced aggregation correlated negatively with the ω3/6ω ratio in adipose tissue (r = -0.25) and the 20: 3ω6/20: 4ω 6 ratio in plasma CE (r = -0.27) and free fatty acids (FFA) (r = -0.23), and positively with adipose tissue 18:2 (r = 0.23) and 20:4ω6 (r = 0.22) in plasma phospholipids (PL).The percentages of prostanoid precursors in platelet lipids, i. e. 20: 3ω 6, 20: 4ω 6 and 20 :5ω 3, correlated best with the same fatty acids in plasma CE (r = 0.32 - 0.77) and PL (r = 0.28 - 0.74). Platelet 20: 5ω 3 had highly significant negative correlations with the percentage of 18:2 in adipose tissue and all plasma lipid fractions (r = -0.35 - -0.44).These results suggest that, among a free-living population, relatively small changes in the fatty acid composition of plasma and platelets may be reflected in significant differences in platelet aggregation, and that an increase in linoleate-rich vegetable fat in the diet may not affect platelet function favourably unless it is accompanied by an adequate supply of ω3 fatty acids.


2021 ◽  
Vol 11 (5) ◽  
pp. 2409
Author(s):  
Wojciech Kolanowski

Salmonids are valuable fish in the human diet due to their high content of bioactive omega-3 very long-chain polyunsaturated fatty acid (VLC PUFA). The aim of this study was to assess the omega-3 VLC PUFA content in selected salmonid fish present on the food market regarding whether they were farm-raised or wild. It was assumed that farm-raised fish, by eating well-balanced feed enriched with omega-3 PUFA, might contain omega-3 VLC PUFA in levels similar to that of wild fish. Fat content, fatty acid composition and omega-3 VLC PUFA content in fish fillets were measured. Farm-raised salmon from Norway, wild Baltic salmon, farm-raised rainbow trout and brown trout were bought from a food market whereas wild trout (rainbow and brown) were caught alive. The fat content in fish ranged from 3.3 to 8.0 g/100 g of fillet. It was confirmed that although wild salmonid fish contain 10–25% more omega-3 VLC PUFA in lipid fraction, the farm-raised ones, due to the 60–100% higher fat content, are an equally rich source of these desirable fatty acids in the human diet. One serving (130 g) of salmonid fish fillets might provide a significant dose of omega-3 VLC PUFA, from 1.2 to 2.5 g. Thus, due to very high content of bioactive fatty acids eicosapentaenoic (EPA), docosapentaenoic (DPA) and docosahexaenoic (DHA) in their meat, salmonid fish currently present on the food market, both sea and freshwater as well as wild and farm-raised, should be considered as natural functional food.


1961 ◽  
Vol 200 (4) ◽  
pp. 847-850 ◽  
Author(s):  
Judith K. Patkin ◽  
E. J. Masoro

Cold acclimation is known to alter hepatic lipid metabolism. Liver slices from cold-acclimated rats have a greatly depressed capacity to synthesize long-chain fatty acids from acctate-1-C14. Since adipose tissue is the major site of lipogenic activity in the intact animal, its fatty acid synthetic capacity was studied. In contrast to the liver, it was found that adipose tissue from the cold-acclimated rat synthesized three to six times as much long-chain fatty acids per milligram of tissue protein as the adipose tissue from the control rat living at 25°C. Evidence is presented indicating that adipose tissue from cold-acclimated and control rats esterify long-chain fatty acids at the same rate. The ability of adipose tissue to oxidize palmitic acid to CO2 was found to be unaltered by cold acclimation. The fate of the large amount of fatty acid synthesized in the adipose tissue of cold-acclimated rats is discussed.


2009 ◽  
Vol 34 (3) ◽  
pp. 315-322 ◽  
Author(s):  
Gregory R. Steinberg

During moderate-intensity exercise, fatty acids are the predominant substrate for working skeletal muscle. The release of fatty acids from adipose tissue stores, combined with the ability of skeletal muscle to actively fine tune the gradient between fatty acid and carbohydrate metabolism, depending on substrate availability and energetic demands, requires a coordinated system of metabolic control. Over the past decade, since the discovery that AMP-activated protein kinase (AMPK) was increased in accordance with exercise intensity, there has been significant interest in the proposed role of this ancient stress-sensing kinase as a critical integrative switch controlling metabolic responses during exercise. In this review, studies examining the role of AMPK as a regulator of fatty acid metabolism in both adipose tissue and skeletal muscle during exercise will be discussed. Exercise induces activation of AMPK in adipocytes and regulates triglyceride hydrolysis and esterfication through phosphorylation of hormone sensitive lipase (HSL) and glycerol-3-phosphate acyl-transferase, respectively. In skeletal muscle, exercise-induced activation of AMPK is associated with increases in fatty acid uptake, phosphorylation of HSL, and increased fatty acid oxidation, which is thought to occur via the acetyl-CoA carboxylase-malony-CoA-CPT-1 signalling axis. Despite the importance of AMPK in regulating fatty acid metabolism under resting conditions, recent evidence from transgenic models of AMPK deficiency suggest that alternative signalling pathways may also be important for the control of fatty acid metabolism during exercise.


2005 ◽  
Vol 288 (3) ◽  
pp. E547-E555 ◽  
Author(s):  
Ana Paola Uranga ◽  
James Levine ◽  
Michael Jensen

Oxidation and adipose tissue uptake of dietary fat can be measured by adding fatty acid tracers to meals. These studies were conducted to measure between-study variability of these types of experiments and assess whether dietary fatty acids are handled differently in the follicular vs. luteal phase of the menstrual cycle. Healthy normal-weight men ( n = 12) and women ( n = 12) participated in these studies, which were block randomized to control for study order, isotope ([3H]triolein vs. [14C]triolein), and menstrual cycle. Energy expenditure (indirect calorimetry), meal fatty acid oxidation, and meal fatty acid uptake into upper body and lower body subcutaneous fat (biopsies) 24 h after the experimental meal were measured. A greater portion of meal fatty acids was stored in upper body subcutaneous adipose tissue (24 ± 2 vs. 16 ± 2%, P < 0.005) and lower body fat (12 ± 1 vs. 7 ± 1%, P < 0.005) in women than in men. Meal fatty acid oxidation (3H2O generation) was greater in men than in women (52 ± 3 vs. 45 ± 2%, P = 0.04). Leg adipose tissue uptake of meal fatty acids was 15 ± 2% in the follicular phase of the menstrual cycle and 10 ± 1% in the luteal phase ( P = NS). Variance in meal fatty acid uptake was somewhat ( P = NS) greater in women than in men, although menstrual cycle factors did not contribute significantly. We conclude that leg uptake of dietary fat is slightly more variable in women than in men, but that there are no major effects of menstrual cycle on meal fatty acid disposal.


1996 ◽  
Vol 1996 ◽  
pp. 155-155
Author(s):  
M S Redshaw ◽  
J Wiseman ◽  
D J A Cole ◽  
J D Wood ◽  
M Enser ◽  
...  

It is well established that the fatty acid combustion of adipose issue in pigs (non-ruminants) may be manipulated by changes in the fatty acid profile of the diets. The objective of this program of work was to quantify the responses of adipose depots of finishing pigs to changes in the level and profile of dietary fatty acids and to relate these changes to the sensory quality of meat as determined by taste panel.


Sign in / Sign up

Export Citation Format

Share Document