scholarly journals The effect of vitamin E and oxidized fish oil on the nutrition of rainbow trout (Salmo gairdneri) grown at natural, varying water temperatures

1984 ◽  
Vol 51 (3) ◽  
pp. 443-451 ◽  
Author(s):  
C. B. Cowey ◽  
Elizabeth Degener ◽  
A. G. J. Tacon ◽  
A. Youngson ◽  
J. G. Bell

1. Groups of rainbow trout (Salmo gairdneri) of approximate mean initial weight 8 g were grown in outdoor tanks over a 14-week period at water temperatures between 12° (start) and 6° (end). Four diets were used. Two contained non-oxidized fish oil (120 g/kg) with or without supplementary DL-α tocopheryl acetate and two contained moderately oxidized fish oil again with or without DL-α-tocopheryl acetate. The measured selenium content of the diets was 0.10 mg/kg.2. No significant differences occurred as a consequence of the use of moderately oxidized oil compared with the corresponding treatments using non-oxidized oil. Significant differences did occur between dietary treatments that contained supplementary DL-α-tocopheryl acetate and those that did not. These differences applied to weight gain, haematocrit, erythrocyte fragility, mortalities, liver and muscle tocopherol concentrations and lipid peroxidation of liver mitochondria in vitro. Liver glutathione peroxidase (EC 1.11.1.9) activity was unaffected by the dietary treatments used and the proportions of fatty acids in polar lipids of liver and muscle were little changed by the diets used. Severe muscle damage occurred in trout given diets lacking supplementary DL-α-tocopheryl acetate.3. Previous experiments carried out on rainbow trout at a constant water temperature of 15° (Hung et al. 1981; Cowey et al. 1981, 1983), using diets lacking supplementary vitamin E, did not lead to differences in weight gain, pathological changes or mortalities.4. Vitamin E requirement may increase as water temperature decreases; minimum dietary requirements for vitamin E measured at a constant water temperature of 15° may not be valid under practical conditions where water temperatures vary over the year.

1980 ◽  
Vol 37 (8) ◽  
pp. 1248-1253 ◽  
Author(s):  
S. S. O. Hung ◽  
C. Y. Cho ◽  
S. J. Slinger

Peroxide value (PV), anisidine value, and thiobarbituric acid (TBA) number were compared as methods for measuring oxidation in fish oils and fish diets. PV was the method of choice for estimating oxidation in the oil. Methods for measuring moderately oxidized oil after being mixed in the diets are discussed. Analyses of dietary samples revealed that the TBA numbers and percentages of polyunsaturated fatty acids were not greatly altered by the addition of moderately oxidized fish oil and by the long-term storage (24 wk) of the diet at room temperature. However, endogenous α-tocopherol levels in the diet were significantly (P < 0.05) reduced by both the addition of moderately oxidized oil and by 24-wk storage. The level of supplemental DL-α-tocopheryl acetate was not changed by the treatments. Fish fed the experimental diets showed no significant differences in body weight gain, feed/gain ratio, mortality, carcass composition, hematocrit, or plasma glutathione peroxidase activity. However, the α-tocopherol concentration in their livers was significantly (P < 0.05) increased by raising the levels of supplementary DL-α-tocopheryl acetate.Key words: oxidized oil, vitamin E, diet stability, Salmo gairdneri


1986 ◽  
Vol 55 (2) ◽  
pp. 305-311 ◽  
Author(s):  
J. G. Bell ◽  
B. J. S. Pirie ◽  
J. W. Adron ◽  
C. B. Cowey

1. Two duplicate groups of rainbow trout (Sulmo gairdneri; mean weight 27 g) were given diets of differing selenium content (deficient 0, 025 mg Se/kg; supplemented 1.022 mg Se/kg) for 30 weeks.2. There were no significant differences between treatments in weight gain but packed cell volume, liver vitamin E and liver and plasma Se concentrations were all significantly lower in the Se-deficient trout.3. Ataxia occurred in about 10% of the Se-deficient trout and histopathologies were evident in nerve cord (damage to axon sheath) and liver (loss of integrity in endoplasmic reticulum and mitochondria with appearance of increased vesiculation).4. Glutathione peroxidase (EC 1.11.1.9) activity was significantly reduced in liver and plasma of Se-deficient fish but there was no indication, from differential assay, of any non-Se-dependent glutathione peroxidase activity. Glutathione transferase (EC 2.5. I.18) activity was significantly increased in Se-deficient trout.


1981 ◽  
Vol 45 (1) ◽  
pp. 137-148 ◽  
Author(s):  
D. Knox ◽  
C. B. Cowey ◽  
J. W. Adron

1. Rainbow trout (Salmo gairdneri) of mean initial weight 35 g were given one of five experimental diets for 20 weeks. The diets contained (g/kg dry diet) 15 calcium, 10 phosphorus and graded levels of magnesium from 0.04 (diet no. 1) to 1.0 (diet no. 5). In a second experiment rainbow trout of mean initial weight 16 g were given one of six experimental diets for 20 weeks. The diets contained (g/kg dry diet): Ca (40), P (30) and levels of Mg from 0.06 (diet no. 6) to 2.0 (diet no. 11).2. In both experiments weight gains were lowest in those trout given diets containing the basal levels of Mg (diet no. 1 and diet no. 6) but increased with increasing dietary Mg concentration. In neither experiment was there any further increase in weight gain once the Mg concentration reached 0.25–0.5 g/kg dry diet; weight gain reached a plateau at this dietary Mg level.3. The following trends occurred in serum electrolyte concentrations as dietary Mg increased. Mg increased in both experiments, in Expt 2 it reached a maximum of 1 mmol/l when the diet containted 0.5 g Mg/kg and did not increase further; sodium was positively correlated in both experiments; potassium decreased and in Expt 2 reached a plateau minimum of 1.7 mmol/l at a dietary Mg concentration of 0.5 g/kg; Ca and P altered little in either experiment.4. In both experiments renal Ca concentrations were greatly increased in trout given diets lacking supplementary Mg; they fell to low levels (3–5 mmol/kg) when diets conained 0.15 g Mg/kg or more. Renal K and P concentrations were negatively correlated with dietary Mg in Expt 2; other electrolytes measured were not altered in concentration by the treatments used.5. Extracellular fluid volume (ECFV) of muscle was negatively correlated with dietary Mg. In Expt 2 it reached a minimal or normal value at 0.5 g Mg/kg diet and did not decease further. Muscle Mg concentration increased with diet Mg in both experiments and muscle K concentration was also correlated with diet Mg in Expt 2. These changes were related to the shift in muscle water. In Expt 1, P concentration was decreased with increasing diet Mg but in Expt 2 its concentration increased, these changes may have been connected with the three-fold difference in dietary P in the two experiments.6. By contrast with skeletal muscle, Mg levels in cardiac muscle increased at low dietary Mg intakes.7. Concentrations of electrolytes in liver did not alter with dietary treatments used.8. The results show that Mg requirement of rainbow trout is met by a diet containing 0.5 g Mg/kg diet.


2021 ◽  
Vol 8 ◽  
Author(s):  
Samad Rahimnejad ◽  
Konrad Dabrowski ◽  
Marisol Izquierdo ◽  
Nima Hematyar ◽  
Aiman Imentai ◽  
...  

This 10-week feeding experiment examined the effects of supplementing vitamin C (VC) and E (VE) in oxidized oil diets on growth, fatty acid composition, blood physiological indicators, innate immunity, antioxidant capacity, and liver and intestine histology of rainbow trout (Oncorhynchus mykiss). Four diets were produced including a fresh fish oil containing diet (FFO diet), an oxidized fish oil containing diet (OFO diet), and OFO diet supplemented with 500 mg kg–1 VC and 400 mg kg–1 VE (OFO+C500+E400 diet) or 1,000 mg kg–1 VC and 800 mg kg–1 VE (OFO+C1000+E800 diet). Four hundred and twenty fish averaging 46.9 ± 0.32 g were stocked into 12 tanks and fed the diets twice a day to visual satiety. The results showed no significant effect of OFO or vitamins supplementation on growth, feed intake and feed utilization (P &gt; 0.05). The groups that received OFO and OFO+C1000+E800 diets had significantly (P &lt; 0.05) lower hepatosomatic indices than the other groups. Muscle fatty acid composition showed decreased proportion of 15:0, 16:0, 16:1n-7, 16:2n-4, 18:1n-5, 18:2n-6 (linoleic acid) and total saturated fatty acids in OFO group. Whereas higher percentages of 20:3n-6 and 20:3n-3 were found in OFO group. In addition, the highest ratio of docosahexaenoic acid (DHA, 22:6n-3) to eicosapentaenoic acid (EPA, 20:5n-3) was detected in OFO+C500+E400 group. The highest serum triglyceride concentration was recorded in the OFO group. Serum aspartate aminotransferase activity increased in OFO and OFO+C1000+E800 groups compared to OFO+C500+E400 group. Furthermore, significantly higher alkaline phosphatase activity in blood was found in OFO and OFO+C500+E400 groups. Significantly lower serum lysozyme, antiprotease, superoxide dismutase, and catalase activities were recorded in OFO group compared to FFO and OFO+C500+E400 groups, and an opposite trend was observed for malondialdehyde concentration. Muscle VC and VE concentrations, and liver and intestine histology remained unaffected. To conclude, feeding diet containing oxidized oil with peroxide value of 182 meq kg–1 with/without VC and VE supplementation did not influence growth and tissue VC and VE concentrations of rainbow trout. However, supplementing 500 mg kg–1 VC and 400 mg kg–1 VE reversed the adverse effects of OFO on non-specific immune response and antioxidant capacity.


1985 ◽  
Vol 53 (1) ◽  
pp. 149-157 ◽  
Author(s):  
J. G. Bell ◽  
C. B. Cowey ◽  
J. W. Adron ◽  
Aileen M. Shanks

1. Duplicate groups of rainbow trout (Salrno gairdnert) (mean weight 11 g) were given for 40 weeks one of four partially purified diets that were either adequate or low in selenium or vitamin E or both.2. Weight gains of trout given the dually deficient diet were significantly lower than those of trout given a complete diet or a diet deficient in Se. No mortalities occurred and the only pathology seen was exudative diathesis in the dually deficient trout.3. There was significant interaction between the two nutrients both with respect to packed cell volume and to malondialdehyde formation in the in vitro NADPH-dependent microsomal lipid peroxidation system.4. Tissue levels of vitamin E and Se decreased to very low levels in trout given diets lacking these nutrients. For plasma there was a significant effect of dietary vitamin E on Se concentration.5. Glutathione (GSH) peroxidase (EC 1. 1 1. 1.9) activity in liver and plasma was significantly lower in trout receiving low dietary Se but was independent of vitamin E intake. The ratios of hepatic GSH peroxidase activity measured with cumene hydroperoxide and hydrogen peroxide were the same for all treatments. This confirms the absence of a Se-independent GSH peroxidase activity in trout liver.6. Se deficiency did not lead to any compensatory increase in hepatic GSH transferase (EC 2. 5. 1. 18) activity; values were essentially the same in all treatments.7. Plasma pyruvate kinase (EC 2. 7. 1.40) activity increased significantly in the trout deficient in both nutrients. This was thought to be due to leakage of the enzyme from the muscle and may be indicative of incipient (subclinical) muscle damage.


Sign in / Sign up

Export Citation Format

Share Document