scholarly journals Verification and Validation of Transient Body Force in GOTHIC for Spent Fuel Pool Response to Seismic Events and Other Applications

2021 ◽  
pp. 1-21
Author(s):  
P. C. Skelton ◽  
J. W. Lane ◽  
T. L. George ◽  
S. W. Claybrook
2018 ◽  
Vol 4 (4) ◽  
Author(s):  
Ming Wang ◽  
Modi Lin ◽  
Jinkai Wang

Spent fuel pool (SFP) stores fuel assemblies removed from the reactor over the years. SFP and its accident mitigation measures may fail simultaneously at the time of the earthquake, which may cause serious accident consequences. This paper uses probabilistic safety assessment (PSA) method to quantitatively evaluate the risk of SFP for a CPR1000 unit caused by seismic events. Quantitative analysis results show that seismic events' risk is the highest in all internal events and external events for SFP. In order to reduce the risk of SFP, more attention should be paid to improve seismic capacity or reduce the common failure for systems and components associated with SFP under the earthquake situation.


Author(s):  
Ming Wang ◽  
Modi Lin ◽  
Jinkai Wang ◽  
Chunju Yang

Spent fuel pool stores fuel assemblies that have been removed from the reactor in previous years, and the release of radioactive material to the external environment is easier than reactor core after fuel damage occurs. In the earthquake situation, the spent fuel pool itself and its accident corresponding mitigation measures are likely to fail at the same time, causing serious accident consequences. Based on the design and operation characteristics of typical CPR1000 units, this paper uses the probability safety analysis method to quantitatively evaluate the risk of spent fuel pool caused by seismic events, and identify the weak links in the design and operation of CPR1000 units. Quantitative analysis shows that the risk of the spent fuel pool caused by seismic events is relatively low relative to the core, with the main risks coming from the collapse of the fuel building and structural damage to the spent fuel pool. In addition, seismic events affect both the core and spent fuel pool, and the steam and radioactivity of spent fuel pools will have an impact on mitigation of core accidents.


Author(s):  
Zhixin Xu ◽  
Ming Wang ◽  
Binyan Song ◽  
WenYu Hou ◽  
Chao Wang

The Fukushima nuclear disaster has raised the importance on the reliability and risk research of the spent fuel pool (SFP), including the risk of internal events, fire, external hazards and so on. From a safety point of view, the low decay heat of the spent fuel assemblies and large water inventory in the SFP has made the accident progress goes very slow, but a large number of fuel assemblies are stored inside the spent fuel pool and without containment above the SFP building, it still has an unignored risk to the safety of the nuclear power plant. In this paper, a standardized approach for performing a holistic and comprehensive evaluation approach of the SFP risk based on the probabilistic safety analysis (PSA) method has been developed, including the Level 1 SFP PSA and Level 2 SFP PSA and external hazard PSA. The research scope of SFP PSA covers internal events, internal flooding, internal fires, external hazards and new risk source-fuel route risk is also included. The research will provide the risk insight of Spent Fuel Pool operation, and can help to make recommendation for the prevention and mitigation of SFP accidents which will be applicable for the SFP configuration risk management.


Author(s):  
Daogang Lu ◽  
Yu Liu ◽  
Shu Zheng

Free standing spent fuel storage racks are submerged in water contained with spent fuel pool. During a postulated earthquake, the water surrounding the racks is accelerated and the so-called fluid-structure interaction (FSI) is significantly induced between water, racks and the pool walls[1]. The added mass is an important input parameter for the dynamic structural analysis of the spent fuel storage rack under earthquake[2]. The spent fuel storage rack is different even for the same vendors. Some rack are designed as the honeycomb construction, others are designed as the end-tube-connection construction. Therefore, the added mass for those racks have to be measured for the new rack’s design. More importantly, the added mass is influenced by the layout of the rack in the spent fuel pool. In this paper, an experiment is carried out to measure the added mass by free vibration test. The measured fluid force of the rack is analyzed by Fourier analysis to derive its vibration frequency. The added mass is then evaluated by the vibration frequency in the air and water. Moreover, a two dimensional CFD model of the spent fuel rack immersed in the water tank is built. The fluid force is obtained by a transient analysis with the help of dynamics mesh method.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205228 ◽  
Author(s):  
Rosane Silva ◽  
Darcy Muniz de Almeida ◽  
Bianca Catarina Azeredo Cabral ◽  
Victor Hugo Giordano Dias ◽  
Isadora Cristina de Toledo e Mello ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
pp. 9-13
Author(s):  
David A. Hakobyan ◽  
Victor I. Slobodchuk

The problems of reprocessing and long-term storage of spent nuclear fuel (SNF) at nuclear power plants with RBMK reactors have not been fully resolved so far. For this reason, nuclear power plants are forced to search for new options for the disposal of spent fuel, which can provide at least temporary SNF storage. One of the possible solutions to this problem is to switch to compacted SNF storage in reactor spent fuel pools (SFPs). As the number of spent fuel assemblies (SFAs) in SFPs increases, a greater amount of heat is released. In addition, no less important is the fact that a place for emergency FA discharging should be provided in SFPs. The paper presents the results of a numerical simulation of the temperature conditions in SFPs both for compacted SNF storage and for emergency FA discharging. Several types of disturbances in normal SFP cooling mode are considered, including partial loss of cooling water and exposure of SFAs. The simulation was performed using the ANSYS CFX software tool. Estimates were made of the time for heating water to the boiling point, as well as the time for heating the cladding of the fuel elements to a temperature of 650 °С. The most critical conditions are observed in the emergency FA discharging compartment. The results obtained make it possible to estimate the time that the personnel have to restore normal cooling mode of the spent fuel pool until the maximum temperature for water and spent fuel assemblies is reached.


2019 ◽  
Vol 7 (3A) ◽  
Author(s):  
Claubia Pereira ◽  
Jéssica P. Achilles ◽  
Fabiano Cardoso ◽  
Victor F. Castro ◽  
Maria Auxiliadora F. Veloso

A spent fuel pool of a typical Pressurized Water Reactor (PWR) was evaluated for criticality studies when it uses reprocessed fuels. PWR nuclear fuel assemblies with four types of fuels were considered: standard PWR fuel, MOX fuel, thorium-uranium fuel and reprocessed transuranic fuel spiked with thorium. The MOX and UO2 benchmark model was evaluated using SCALE 6.0 code with KENO-V transport code and then, adopted as a reference for other fuels compositions. The four fuel assemblies were submitted to irradiation at normal operation conditions. The burnup calculations were obtained using the TRITON sequence in the SCALE 6.0 code package. The fuel assemblies modeled use a benchmark 17x17 PWR fuel assembly dimensions. After irradiation, the fuels were inserted in the pool. The criticality safety limits were performed using the KENO-V transport code in the CSAS5 sequence. It was shown that mixing a quarter of reprocessed fuel withUO2 fuel in the pool, it would not need to be resized 


2013 ◽  
Vol 479-480 ◽  
pp. 543-547
Author(s):  
Jong Rong Wang ◽  
Hao Tzu Lin ◽  
Wan Yun Li ◽  
Shao Wen Chen ◽  
Chun Kuan Shih

In the nuclear power plant (NPP) safety, the safety analysis of the NPP is very important work. In Fukushima NPP event, due to the earthquake and tsunami, the cooling system of the spent fuel pool failed and the safety issue of the spent fuel pool generated. In this study, the safety analysis of the Chinshan NPP spent fuel pool was performed by using TRACE and FRAPTRAN, which also assumed the cooling system of the spent fuel pool failed. There are two cases considered in this study. Case 1 is the no fire water injection in the spent fuel pool. Case 2 is the fire water injection while the water level of the spent fuel pool uncover the length of fuel rods over 1/3 full length. The analysis results of the case 1 show that the failure of cladding occurs in about 3.6 day. However, the results of case 2 indicate that the integrity of cladding is kept after the fire water injection.


Sign in / Sign up

Export Citation Format

Share Document