1st and 2nd Law Characteristics in a Micropipe: Integrated Effects of Surface Roughness, Heat Flux and Reynolds Number

2009 ◽  
Vol 30 (12) ◽  
pp. 973-987 ◽  
Author(s):  
A. Alper Ozalp
2011 ◽  
Vol 134 (2) ◽  
Author(s):  
Ruander Cardenas ◽  
Vinod Narayanan

An experimental study of jet impingement boiling is presented for water under saturated and subcooled conditions. Unique to this study is the documentation of boiling curves of a submerged water jet under subatmospheric conditions. Data are reported at a fixed nondimensional nozzle-to-surface distance of H/dj = 6 and for a fixed surface-to-nozzle diameter ratio, dsurf/dj, of 23.8. Saturated jet impingement experiments are performed at three subatmospheric pool pressures of 0.176 bar, 0.276 bar, and 0.478 bar with corresponding saturation temperatures of 57.3 °C, 67.2 °C, and 80.2 °C. At each pressure, jet impingement boiling at varying Reynolds numbers are characterized and compared with pool boiling heat transfer. The effect of surface roughness and fluid subcooling is studied at the lowest pressure of 0.176 bar. Boiling curves indicate a strong dependence of heat flux on jet Reynolds number in the partially developed nucleate boiling region but only a weak dependence in the fully developed nucleate boiling region. At a fixed wall superheat, fluid subcooling is found to shift the boiling curve to the left thereby enhancing heat transfer performance. Critical heat flux is found to increase with increases in pressure, surface roughness, and Reynolds number.


Author(s):  
Hasan Gunes ◽  
Sertac Cadirci

In this study we show that the POD can be used as a useful tool to solve inverse design problems in thermo-fluids. In this respect, we consider a forced convection problem of air flow in a grooved channel with periodically mounted constant heat-flux heat sources. It represents a cooling problem in electronic equipments where the coolant is air. The cooling of electronic equipments with constant periodic heat sources is an important problem in the industry such that the maximum operating temperature must be kept below a value specified by the manufacturer. Geometric design in conjunction with the improved convective heat transfer characteristics is important to achieve an effective cooling. We obtain a model based on the proper orthogonal decomposition for the convection optimization problem such that for a given channel geometry and heat flux on the chip surface, we search for the minimum Reynolds number (i.e., inlet flow speed) for a specified maximum surface temperature. For a given geometry (l = 3.0 cm and h = 2.3 cm), we obtain a proper orthogonal decomposition (POD) model for the flow and heat transfer for Reynolds number in the range 1 and 230. It is shown that the POD model can accurately predict the flow and temperature field for off-design conditions and can be used effectively for inverse design problems.


Author(s):  
Assunta Andreozzi ◽  
Vincenzo Naso ◽  
Oronzio Manca

In this study a numerical investigation of mixed convection in air in horizontal parallel walled channels with moving lower plate is carried out. The moving lower plate has a constant velocity and it is adiabatic, whereas the upper one is heated at uniform heat flux. The effects of horizontal channel height, heat flux and moving plate velocity are analyzed. Results in terms of temperature and stream function fields are given and the mass flow rate per unit of length and divided by the dynamic viscosity is reported as a function of Reynolds number based on the moving plate velocity. For stationary condition of lower plate, a typical C–loop inside the horizontal channel is detected. Different flow motions are observed in the channel and the two reservoirs, depending on the heat flux values and the distance between the heated upper stationary plate and lower adiabatic moving plate. The dimensionless induced mass flow rate presents different increase between the Reynolds number lower or greater than 1000.


Author(s):  
Chen-Ru Zhao ◽  
Zhen Zhang ◽  
Qian-Feng Liu ◽  
Han-Liang Bo ◽  
Pei-Xue Jiang

Numerical investigations are performed on the convection heat transfer of supercritical pressure fluid flowing through vertical mini tube with inner diameter of 0.27 mm and inlet Reynolds number of 1900 under various heat fluxes conditions using low Reynolds number k-ε turbulence models due to LB (Lam and Bremhorst), LS (Launder and Sharma) and V2F (v2-f). The predictions are compared with the corresponding experimentally measured values. The prediction ability of various low Reynolds number k-ε turbulence models under deteriorated heat transfer conditions induced by combinations of buoyancy and flow acceleration effects are evaluated. Results show that all the three models give fairly good predictions of local wall temperature variations in conditions with relatively high inlet Reynolds number. For cases with relatively low inlet Reynolds number, V2F model is able to capture the general trends of deteriorated heat transfer when the heat flux is relatively low. However, the LS and V2F models exaggerate the flow acceleration effect when the heat flux increases, while the LB model produces qualitative predictions, but further improvements are still needed for quantitative prediction. Based on the detailed flow and heat transfer information generated by simulation, a better understanding of the mechanism of heat transfer deterioration is obtained. Results show that the redistribution of flow field induced by the buoyancy and flow acceleration effects are main factors leading to the heat transfer deterioration.


2014 ◽  
Vol 763 ◽  
pp. 109-135 ◽  
Author(s):  
Sebastian Wagner ◽  
Olga Shishkina

AbstractDirect numerical simulations (DNS) of turbulent thermal convection in a box-shaped domain with regular surface roughness at the heated bottom and cooled top surfaces are conducted for Prandtl number $\mathit{Pr}=0.786$ and Rayleigh numbers $\mathit{Ra}$ between $10^{6}$ and $10^{8}$. The surface roughness is introduced by four parallelepiped equidistantly distributed obstacles attached to the bottom plate, and four obstacles located symmetrically at the top plate. By varying $\mathit{Ra}$ and the height and width of the obstacles, we investigate the influence of the regular wall roughness on the turbulent heat transport, measured by the Nusselt number $\mathit{Nu}$. For fixed $\mathit{Ra}$, the change in the value of $\mathit{Nu}$ is determined not only by the covering area of the surface, i.e. the obstacle height, but also by the distance between the obstacles. The heat flux enhancement is found to be largest for wide cavities between the obstacles which can be ‘washed out’ by the flow. This is also manifested in an empirical relation, which is based on the DNS data. We further discuss theoretical limiting cases for very wide and very narrow obstacles and combine them into a simple model for the heat flux enhancement due to the wall roughness, without introducing any free parameters. This model predicts well the general trends and the order of magnitude of the heat flux enhancement obtained in the DNS. In the $\mathit{Nu}$ versus $\mathit{Ra}$ scaling, the obstacles work in two ways: for smaller $\mathit{Ra}$ an increase of the scaling exponent compared to the smooth case is found, which is connected to the heat flux entering the cavities from below. For larger $\mathit{Ra}$ the scaling exponent saturates to the one for smooth plates, which can be understood as a full washing-out of the cavities. The latter is also investigated by considering the strength of the mean secondary flow in the cavities and its relation to the wind (i.e. the large-scale circulation), that develops in the core part of the domain. Generally, an increase in the roughness height leads to stronger flows both in the cavities and in the bulk region, while an increase in the width of the obstacles strengthens only the large-scale circulation of the fluid and weakens the secondary flows. An increase of the Rayleigh number always leads to stronger flows, both in the cavities and in the bulk.


2000 ◽  
Author(s):  
Stephen E. Turner ◽  
Hongwei Sun ◽  
Mohammad Faghri ◽  
Otto J. Gregory

Abstract This paper presents an experimental investigation on nitrogen and helium flow through microchannels etched in silicon with hydraulic diameters between 10 and 40 microns, and Reynolds numbers ranging from 0.3 to 600. The objectives of this research are (1) to fabricate microchannels with uniform surface roughness and local pressure measurement; (2) to determine the friction factor within the locally fully developed region of the microchannel; and (3) to evaluate the effect of surface roughness on momentum transfer by comparison with smooth microchannels. The friction factor results are presented as the product of friction factor and Reynolds number plotted against Reynolds number. The following conclusions have been reached in the present investigation: (1) microchannels with uniform corrugated surfaces can be fabricated using standard photolithographic processes; and (2) surface features with low aspect ratios of height to width have little effect on the friction factor for laminar flow in microchannels.


Author(s):  
Thomas B. Gradinger ◽  
T. Laneryd

Natural-convection cooling with oil or other fluids of high Prandtl number plays an important role in many technical applications such as transformers or other electric equipment. For design and optimization, one-dimensional (1D) flow models are of great value. A standard configuration in such models is flow between vertical parallel plates. Accurate modeling of heat transfer, buoyancy, and pressure drop for this configuration is therefore of high importance but gets challenging as the influence of buoyancy rises. For increasing ratio of Grashof to Reynolds number, the accuracy of one-dimensional models based on the locally forced-flow assumption drops. In the present work, buoyancy corrections for use in one-dimensional models are developed and verified. Based on two-dimensional (2D) simulations of buoyant flow using finite-element solver COMSOL Multiphysics, corrections are derived for the local Nusselt number, the local friction coefficient, and a parameter relating velocity-weighted and volumetric mean temperature. The corrections are expressed in terms of the ratio of local Grashof to Reynolds number and a normalized distance from the channel inlet, both readily available in a one-dimensional model. The corrections universally apply to constant wall temperature, constant wall heat flux, and mixed boundary conditions. The developed correlations are tested against two-dimensional simulations for a case of mixed boundary conditions and are found to yield high accuracy in temperature, wall heat flux, and wall shear stress. An application example of a natural-convection loop with two finned heat exchangers shows the influence on mass-flow rate and top-to-bottom temperature difference.


Author(s):  
Yan Wang ◽  
Xiang Ling

The heat transfer performance of fluid flowing in a microchannel was experimentally studied, to meet the requirement of extremely high heat flux removal of microelectronic devices. There were 10 parallel microchannels with rectangular cross-section in the stainless steel plate, which was covered by a glass plate to observe the fluid flowing behavior, and another heating plate made of aluminum alloy was positioned behind the microchannel. Single phase heat transfer and fluid flow downstream the microchannel experiments were conducted with both deionized water and ethanol. Besides experiments, numerical models were also set up to make a comparison with experimental results. It is found that the pressure drop increases rapidly with enlarging Reynolds number (200), especially for ethanol. With comparison, the flow resistance of pure water is smaller than ethanol. Results also show that the friction factor decreases with Reynolds number smaller than the critical value, while increases the velocity, the friction factor would like to keep little changed. We also find that the water friction factors obtained by CFD simulations in parallel microchannels are much larger than experiment results. With heat flux added to the fluid, the heat transfer performance can be enhanced with larger Re number and the temperature rise could be weaken. Compared against ethanol, water performed much better for heat removal. However, with intensive heat flux, both water and ethanol couldn’t meet the requirement and the temperature at outlet would increase remarkably, extremely for ethanol. These findings would be helpful for thermal management design and optimization.


Sign in / Sign up

Export Citation Format

Share Document