Copper deficiency of wheat: Effects of soil water content and fertilizer placement on plant growth

1991 ◽  
Vol 14 (5) ◽  
pp. 499-509 ◽  
Author(s):  
N.J. Grundon

The conservation of water resources through their optimal use is a compulsory for countries with water shortages in the arid and semi-arid regions, and it should be in an environmentally friendly manner to avoid the serious consequences of the use of environmentally harmful substances, the implications of which are currently evident from climate change, pollution of water bodies, soils, etc. Since Egypt is one of those countries suffering from water scarcity and uses about 82.5 percent of its water consumption in agriculture, according to data of the Ministry of Irrigation in 2010, so this research is focusing on the use of new methods to increase the efficiency of irrigation water, to achieve high productivity of agricultural crops with less water use that will certainly help to alleviate or solve the water scarcity issue. The study used a physical based model, to simulate the methods used to increase sand soil properties to ensure larger water retention index. Within this work, soil have been sampled from different areas, to simulate the behavior of arid lands, under different water retention techniques. Soil was exposed to different techniques, as it was mixed with soil additives in different quantities and different types. Physical barriers of cohesive soil and polyethylene sheets were used in addition to studying the effect of mulch on water storage capacity in noncohesive soil. Water retention have been measured using the direct method of determination soil water content by oven drying and the volumetric water content (𝞱v ) with time graphs have been plotted in groups, as well as the cultivated plants have been monitored as to measure the influence on plants growing and irrigation efficiency. And the experiment showed that the use of rice straw (RS) and wheat straw (WS) in the powder condition have a significant effect in increasing in the soil water content and even to the plant growth, the WS obtained 𝞱v values approaching the loam soil at times and slightly less in the case of RS, when the percentage of RC and WS was 30% to the sandy soil volume/volume (v/v). Also the use of mulch of RS showed a noticeable increase in 𝞱v and significant improvement of plant growth to that without mulch. These proven technologies can be used in sandy land targeted for reclamation to reduce water use in agriculture.


2013 ◽  
Vol 726-731 ◽  
pp. 3872-3876 ◽  
Author(s):  
Xiao Jun Jin ◽  
Jing Long Fan ◽  
Bo Xu ◽  
Bing Wen Li ◽  
Xin Wen Xu

In order to clarify the influence of saline water irrigation to plant growth and distribution ofsoil water-salt, and providing theoretical basis for sustainable water supply of ecological constructionin desert area, the data of soil water-salt and plant growth was observed at Tarim Desert HighwayShelter-forest Ecological Project No. 17 well. The law of soil water and salt spatial distribution wasanalyzed, and the responses of plant growth to 4 different irrigation amounts were studied by singleelement variance analysis. The results were as follows: the soil water content reaches or is close tosaturation in layer of 100~120cm under the 420mm irrigation water condition; The soil water contentreaches or is close to saturation in layer of 160~180cm under the 233.1mm irrigation water condition;The soil water content reaches or is close to saturation in layer of 180~200cm under the 285.6mm irrigation water condition; The soil water content reaches or is close to saturation in layer of160~180cm under the 201.6mm irrigation water condition. The vertical distribution law of soilssalinity is that the soil salt can enter groundwater after 3 days of irrigation, and be gathered in 0~30cmsoil layer. There were no significant differences except the Tamarix plant height in plant growthindexes among 4 different irrigation quantities treatments.


2018 ◽  
Vol 30 (2) ◽  
pp. 215-228
Author(s):  
Ali Sharghi ◽  
Hassanali Naghdi Badi ◽  
Sahebali Bolandnazar ◽  
Ali Mehrafarin ◽  
Mohammad Reza Sarikhani

Abstract Fenugreek (Trigonella foenum-graecum L.) is a valuable medicinal plant, which is widely distributed throughout the world. It has been known that plant growth promoting rhizobacteria (PGPR) have positive effects on the quality and quantity of medicinal plants under different soil water levels. For this reason, a factorial experiment was conducted on the basis of a randomized complete block design (RCBD) to evaluate PGPR effects on the morphophysiological and phytochemical traits of fenugreek under different soil water levels. This study was conducted in two separate experiments: after the six-leaf stage and after the flowering stage. In the experiments, the treatments were plant growth promoting rhizobacteria (PGPR) including the control, Sinorhizobium meliloti, Pseudomonas fluorescens, a combination of S. meliloti and P. fluorescens, and different soil water levels (i.e. 100, 80, 60 and 40% of field capacity (FC) in three replications. The results showed that the highest seed weight per plant was obtained by inoculation with the S. meliloti and P. fluorescens combination at 100% FC after the two developmental stages. The maximum concentrations of nicotinic acid and trigonelline were observed for the combination of S. meliloti and P. fluorescens at the soil water content of 40% FC after the six-leaf stage and for S. meliloti at the soil water content of 40% FC after the flowering stage. The correlation and stepwise regression analyses showed positive effects of PGPR application on the morphophysiological and phytochemical traits of fenugreek plants under different soil water levels.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1216
Author(s):  
Ágota Horel ◽  
Eszter Tóth

The aim of this study was to do a complex examination of the soil–plant–water system and soil greenhouse gas emissions when biochar is applied to soil planted with sweet corn (Zea mays L. var. saccharata). The study covers two consecutive vegetation periods. We investigated (i) the changes in plant growth, (ii) soil water and temperature at different depths, (iii) greenhouse gas (GHG) emissions (CO2 and N2O) after biochar application, and (iv) the soil water, chemistry, and plant interactions. We used discrete measurements for plant growth, biomass production, and soil chemistry, while continuously monitoring the soil water content and temperature, and the state of plant health (i.e., using spectral reflectance sensors). Plant response in the control plot showed higher values of normalized difference vegetation index (NDVI; 0.3%) and lower values for photochemical reflectance index (PRI) and fraction of absorbed photosynthetically active radiation (fAPAR) by 26.8% and 2.24%, respectively, than for biochar treatments. We found significant negative correlations between fAPAR and soil water contents (SWC), and NDVI and SWC values (−0.59 < r < −0.30; p < 0.05). Soil temperature at the depth of 15 cm influenced soil CO2 emissions to a larger extent (r > 0.5; p < 0.01) than air temperature (0.21 < r < 0.33) or soil water content (r < 0.06; p > 0.05). Our data showed strong connections between GHG production and soil chemical parameters of soil pH, nitrogen, potassium, or phosphate concentrations. Biochar application increased soil CO2 emissions but reduced N2O emissions. Our results demonstrated that biochar amendment to soils can help plant growth initially, but might not result in enhanced crop yield. The plant parameters were substantially different between the investigated years for both control and biochar amended parcels; therefore, long-term studies are essential to document the lasting effects of these treatments.


Author(s):  
Wilson de A. Orlando Junior ◽  
Haroldo C. Fernandes ◽  
Paulo R. Forastiere ◽  
Tiago M. Guazzelli ◽  
Guilherme de M. Araújo

ABSTRACT Adequate soil managements and use of agricultural machinery are essential for the economic viability of these practices and for the environmental preservation. In this context, sowing and fertilizer application practices are the most important activities, since they affect crop development and present high energy demand. Therefore, the objective of this study was to evaluate the energy demand of a tractor-planter-fertilizer unit for the sowing of common bean seeds in no-tillage system as a function of three soil water contents (28.7, 36.4, and 47.6%) and three soil fertilizer placement depths (0.06; 0.11 and 0.15 m). The final common bean grain yield was also evaluated. The lowest energy demand was found for the highest soil water content combined with the lowest soil fertilizer placement depth. The highest common bean grain yield was found for plants under soil water content of 36.4% and fertilizer placement depth of 0.11 m, reaching 4,186 kg ha-1.


2020 ◽  
Vol 10 ◽  
Author(s):  
Elena Nikolaevna Ikkonen ◽  
Norma Eugenia García-Calderón ◽  
Ervin Stephan-Otto ◽  
Elizabeth Fuentes-Romero ◽  
Abel Ibáñez-Huerta ◽  
...  

Since soil CO<sub>2</sub> flux is a key component of ecosystem carbon balance, quantifying its contribution to the ecosystem carbon flux and understanding the factors that underlie its temporal variation is crucial for a better comprehension of ecosystem carbon dynamics under climate change and for optimal ecosystem use and management. Our objectives were to quantify the contributions of total soil CO<sub>2</sub> efflux (<em>F</em><sub>S</sub>) to ecosystem respiration (<em>R</em><sub>E</sub>) and heterotrophic soil CO<sub>2</sub> efflux (<em>F</em><sub>H</sub>) to <em>F</em><sub>S</sub> in two <em>chinampa</em> ecosystems with different natural grass covers. We also aimed to identify the main environmental drivers of seasonal variability of these contributions. The CO<sub>2</sub> fluxes were measured on each site about every 14 days from September 2008 to August 2009 in the Xochimilco Ecological Park in Mexico City using dark chamber techniques. For two studied sites, <em>R</em><sub>E</sub>,<em> F</em><sub>S</sub> and <em>F</em><sub>H</sub> were estimated on average as 94.1 ± 8.5, 34.7 ± 3.5 and 16.5 ± 1.7 (± S.E.) mg C-CO<sub>2</sub> m<sup>-2</sup> h<sup>-1</sup>, respectively. &nbsp;On average over the study period and sites, the annual cumulative <em>R</em><sub>E</sub>, <em>F</em><sub>S</sub> and <em>F</em><sub>H</sub> fluxes were 824 ± 74, 304 ± 31 and 145 ± 15 g C m<sup>-2</sup> year, respectively. The <em>R</em><sub>E</sub>, <em>F</em><sub>S</sub> and <em>F</em><sub>H</sub> varied between the winter and summer seasons; this variation was explained mostly by seasonal variations of soil temperature, soil water content and shoot plant biomass. Temperature sensitivity of CO<sub>2</sub> fluxes depended on vegetation type and plant growth differences among the sites and decreased in the following order: <em>R</em><sub>E</sub> &gt; <em>R</em><sub>s</sub> &gt; <em>R</em><sub>H</sub>. The contribution of <em>F</em><sub>S</sub> to <em>R</em><sub>E</sub> and <em>F</em><sub>H</sub> to <em>F</em><sub>S</sub> for the two studied sites and period averaged about 38% and 50%, respectively regardless of the site vegetation type, but the degree of <em>F</em><sub>S</sub>/<em>R</em><sub>E</sub> and <em>F</em><sub>H</sub>/<em>F</em><sub>S</sub> variability depended on the differences in seasonal dynamics of plant cover. The contribution of <em>F</em><sub>H </sub>to <em>F</em><sub>S</sub> varied from 37% in summer to 73% in winter at the site without a seasonal shift in dominant plant species, but <em>F</em><sub>H</sub>/<em>F</em><sub>S</sub> was close to constant during the year at the site with a seasonal change in dominant plant species. During the cold period, the contribution of <em>F</em><sub>H </sub>to <em>F</em><sub>S</sub> increased following plant growth decrease. The linear regression analysis showed that plant biomass was the dominant factor controlling the seasonal variation of <em>F</em><sub>H</sub>/<em>F</em><sub>S</sub> ratios, whereas the plant biomass dynamic followed the dynamics of soil water content, water table depth, and soil temperature. Our results suggest that seasonal variation of soil contribution to total fluxes from the <em>chinampa</em> ecosystem is locally differentiated. These differences were related to differences in seasonal dynamics of cover productivity which has been associated with localization of soil water content. This finding has important implications for assessing the contribution of the chinampa ecosystem to the global carbon budget.


2020 ◽  
Vol 20 (5) ◽  
pp. 1617-1628
Author(s):  
Dingpu Cheng ◽  
Qingtao Zhang ◽  
Siyu Huang

Abstract In this study, the authors designed and applied a new irrigation method called capillary wicking irrigation (CWI), which used microfiber fabric as the source material of irrigation. At present, the effects of CWI on soil moisture, plant growth and surface temperature of a green roof with rain storage are not clear. An experiment was conducted on a green roof in Guangzhou. The authors set three transparent Plexiglas containers (A, B and C) with a side length of 1.5 m as an experimental frame on the roof. The authors put ‘steering wheel’ microfiber CWI in containers A and C, which were planted with Sedum lineare Thunb and Fittonia verschaffeltii, respectively. Container B with no CWI was planted with Sedum lineare Thunb. Results indicated that CWI could increase soil water content and make the variation of soil water content gentle in the containers on the roof. The green roof with rain storage had the function of heat preservation in winter and cooling effect in summer, especially for the green roof with CWI. Compared with container B, container A gave better plant growth, for ‘steering wheel’ microfiber CWI can basically provide automatic and suitable water supply for the plant. Therefore, CWI is an effective infiltration irrigation technique for roof greening.


2020 ◽  
Vol 206 (5) ◽  
pp. 505-516
Author(s):  
Sonia Czarnes ◽  
Pierre‐Edouard Mercier ◽  
Damien G. Lemoine ◽  
Jihane Hamzaoui ◽  
Laurent Legendre

Sign in / Sign up

Export Citation Format

Share Document