Raman and ultraviolet–visible spectroscopy of titanium chromium nitride thin films

2020 ◽  
pp. 1-6
Author(s):  
Abbas Kosari Mehr ◽  
Reza Babaei ◽  
Ali Kosari Mehr ◽  
Mohammad Reza Zamani Meymian
2021 ◽  
pp. 102493
Author(s):  
M.A. Gharavi ◽  
D. Gambino ◽  
A. le Febvrier ◽  
F. Eriksson ◽  
R. Armiento ◽  
...  

1996 ◽  
Vol 281-282 ◽  
pp. 314-317 ◽  
Author(s):  
F. Esaka ◽  
H. Shimada ◽  
M. Imamura ◽  
N. Matsubayashi ◽  
T. Sato ◽  
...  

2005 ◽  
Vol 200 (1-4) ◽  
pp. 250-253 ◽  
Author(s):  
A. Lippitz ◽  
Th. Hübert
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Younes Ziat ◽  
Hamza Belkhanchi ◽  
Maryama Hammi ◽  
Ousama Ifguis

Thin films of epoxy/silicone loaded with N-CNT were prepared by a method of sol-gel and deposited on ITO glass substrates at room temperature. The properties of the loaded monolayer samples (0.00, 0.07, 0.1, and 0.2 wt% N-CNTs) were analyzed by UV-visible spectroscopy. The transmittance for the unloaded thin films is 88%, and an average transmittance for the loaded thin film is about 42 to 67% in the visible range. The optical properties were studied from UV-visible spectroscopy to examine the transmission spectrum, optical gap, Tauc verified optical gap, and Urbach energy, based on the envelope method proposed by Swanepoel (1983). The results indicate that the adjusted optical gap of the film has a direct optical transition with an optical gap of 3.61 eV for unloaded thin films and 3.55 to 3.19 eV for loaded thin films depending on the loading rate. The optical gap is appropriately adapted to the direct transition model proposed by Tauc et al. (1966); its value was 3.6 eV for unloaded thin films and from 3.38 to 3.1 eV for loaded thin films; then, we determined the Urbach energy which is inversely variable with the optical gap, where Urbach’s energy is 0.19 eV for the unloaded thin films and varies from 0.43 to 1.33 eV for the loaded thin films with increasing rate of N-CNTs. Finally, nanocomposite epoxy/silicone N-CNT films can be developed as electrically conductive materials with specific optical characteristics, giving the possibility to be used in electrooptical applications.


2021 ◽  
Author(s):  
Ahmed ZITI ◽  
Bouchaib HARTITI ◽  
Amine BELAFHAILI ◽  
Hicham LABRIM ◽  
Salah FADILI ◽  
...  

Abstract Quaternary semiconductor Cu2NiSnS4 thin film was made by the sol-gel method associated to dip-coating technique on ordinary glass substrates. In this paper, we have studied the impact of dip-coating cycle at different cycles: 4, 5 and 6 on the structural, compositional, morphological, optical and electrical characteristics. CNTS thin films have been analyzed by various characterization techniques including: X-ray diffractometer (XRD), Raman measurements, scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDS), UV-visible spectroscopy and four-point probe method. XRD spectra demonstrated the formation of cubic Cu2NiSnS4 with privileged orientation at (111) plane. Crystallite size of cubic CNTS thin films increase with from 6.30 to 9.52 with dip-coating cycle augmented. Raman scattering confirmed the existence of CNTS thin films by Raman vibrational mode positioned at 332 cm− 1. EDS investigations showed near-stoichiometry of CNTS sample deposited at 5 cycles. Scanning electron microscope showed uniform surface morphologies without any crack. UV-visible spectroscopy indicated that the optical absorption values are larger than 104 cm− 1, Estimated band gap energy of CNTS absorber layers decrease from 1.64 to 1.5 eV with dip-coating cycle increased. The electrical conductivity of CNTS thin films increase from 0.19 to 4.16 (Ω cm)-1. These characteristics are suitable for solar cells applications.


2018 ◽  
Vol 32 (19) ◽  
pp. 1840044
Author(s):  
Aditya Dalal ◽  
Animesh Mandal ◽  
Shubhada Adhi ◽  
Kiran Adhi

Aluminum (0.5 at.%)-doped ZnO (AZO) thin films were deposited by pulsed laser deposition technique (PLD) in oxygen ambient of 10[Formula: see text] Torr. The deposited thin films were characterized by x-ray diffraction (XRD), photoluminescence (PL), Raman spectroscopy and uv–visible spectroscopy (UV–vis). Next, graphene oxide (GO) was synthesized by Hummers method and was characterized by XRD, UV–vis spectroscopy, Raman spectroscopy and transmission electron microscopy (TEM). Thereafter, GO solution was drop-casted on AZO thin films. These films were then characterized by Raman Spectroscopy, UV–vis spectroscopy and PL. Attempt is being made to comprehend the modifications in properties brought about by integration.


2020 ◽  
Vol 389 ◽  
pp. 125635
Author(s):  
Sascha Louring ◽  
Kristian Rechendorff ◽  
Klaus Pagh Almtoft ◽  
Benjamin Watts ◽  
Christian Sloth Jeppesen ◽  
...  

1985 ◽  
Vol 40 (2) ◽  
pp. 222-228 ◽  
Author(s):  
Mohamed Yalpani ◽  
E. Klotzbücher

The course of Aggregation of molecules of the title compound (1b) through different, spectroscopically discernible and chemically identifiable forms of associations could be followed by matrix isolation and thin film infrared and UV-visible spectroscopy. It was found that molecules of 1b in thin films form clusters which at low temperatures interact weakly, probably through the carbonyl oxygens of one and the boron atoms of the neighbouring molecules. On warming to 260 K this association gradually takes the form of more defined chelate bonds, probably with ordered three-dimensional intermolecular structures. Above this temperature spontaneous formation of crystallites of the previously reported ʻhotʼ and ʻcoldʼ modifications was observed. Studies with films of varying thickness indicate an interdependence of crystallite size and lattice energies.


Sign in / Sign up

Export Citation Format

Share Document