scholarly journals MOCVD-Grown InGa/GaAs Emitter Delta Doping Heterojunction Bipolar Transistors

2002 ◽  
Vol 25 (3) ◽  
pp. 239-243
Author(s):  
K. F. Yarn

The influence of delta doping sheet at base-emitter (BE) junction for an InGaP/GaAs heterojunction bipolar transistor (HBT) with a 75Å undoped spacer layer is investigated. A common emitter current gain of 235, an offset voltage as small as 50mV and an Ic ideal factor of 1.01 are obtained, respectively. The use of delta doping sheet at BE junction results in a high gain and low offset voltage HBT. The improvement of current gain and offset voltage may be attributed to the reduction of BE potential spike by introducing a delta doping layer even without the BE junction passivation.

1994 ◽  
Vol 15 (9) ◽  
pp. 336-338 ◽  
Author(s):  
H.R. Chen ◽  
C.Y. Chang ◽  
C.P. Lee ◽  
C.H. Huang ◽  
J.S. Tsang ◽  
...  

2008 ◽  
Vol 47-50 ◽  
pp. 383-386
Author(s):  
Jung Hui Tsai ◽  
Shao Yen Chiu ◽  
Wen Shiung Lour ◽  
Chien Ming Li ◽  
Yi Zhen Wu ◽  
...  

In this article, a novel InGaP/GaAs pnp δ-doped heterojunction bipolar transistor is first demonstrated. Though the valence band discontinuity at InGaP/GaAs heterojunction is relatively large, the addition of a δ-doped sheet between two spacer layers at the emitter-base junction effectively eliminates the potential spike and increases the confined barrier for electrons, simultaneously. Experimentally, a high current gain of 25 and an offset voltage of 100 mV are achieved. The offset voltage is much smaller than the conventional InGaP/GaAs pnp HBT. The proposed device could be used for linear amplifiers and low-power complementary integrated circuit applications.


Author(s):  
Jihane Ouchrif ◽  
Abdennaceur Baghdad ◽  
Aicha Sshel ◽  
Abdelmajid Badri ◽  
Abdelhakim Ballouk

<p>Heterojunction Bipolar Transistors are being used increasingly in communication systems due to their electrical performances. They are considered as excellent electronic devices. This paper presents an investigation of the static current gain β based on two technological parameters related to the device geometry for InP/InGaAs Single Heterojunction Bipolar Transistor (SHBT). These parameters are the base width  and the emitter length . We used Silvaco’s TCAD tools to design the device structure, and to extract the static current gain β from I-V output characteristics figures. According to this investigation, we determined the optimal values of the examined parameters which allow obtaining the highest static current gain β.</p>


Author(s):  
John T Torvik ◽  
M. Leksono ◽  
J. I. Pankove ◽  
B. Van Zeghbroeck

We report on the fabrication and characterization of GaN/4H-SiC n-p-n heterojunction bipolar transistors (HBTs). The device structure consists of an n-SiC collector, p-SiC base, and selectively grown n-GaN emitter. The HBTs were grown using metalorganic chemical vapor deposition on SiC substrates. Selective GaN growth through a SiO2 mask was used to avoid damage that would be caused by reactive ion etching. In this report, we demonstrate common base transistor operation with a modest dc current gain of 15 at room temperature and 3 at 300°C.


2005 ◽  
Vol 892 ◽  
Author(s):  
Jay M Shah ◽  
Thomas Gessmann ◽  
Hong Luo ◽  
Yangang Xi ◽  
Kaixuan Chen ◽  
...  

AbstractOne of the major challenges affecting the performance of Npn AlGaN/GaN heterojunction bipolar transistors (HBTs) is the high base access resistance, which is comprised of the base contact resistance and the base bulk resistance. A novel concept is proposed to reduce the base access resistance in Npn AlGaN/GaN HBTs by employing polarization-enhanced contacts and selective epitaxial growth of the base and emitter. In addition, this technique reduces the exposed base surface area, which results in a lower surface recombination current. Such a structure would enable better performance of AlGaN/GaN HBTs in terms of higher current gain and a lower offset voltage. Theoretical calculations on polarization-enhanced contacts predict p-type specific contact resistance lower than 10-5 Ωcm2. Experimental results using transmission line measurement (TLM) technique yield specific contact resistances of 5.6×10-4 Ωcm2 for polarization-enhanced p-type contacts and 7.8×10-2 Ωcm2 for conventional p-type contacts.


2004 ◽  
Vol 14 (03) ◽  
pp. 819-824 ◽  
Author(s):  
HUILI G. XING ◽  
UMESH K. MISHRA

DC I-V characteristics of AlGaN/GaN heterojunction bipolar transistors (HBTs) and GaN homojunction bipolar transistors (BJTs) are analyzed in the temperature range of 200-450 K. At low current levels, the adverse effects of poor ohmic contacts coupled with paths of high leakage make it difficult to extract intrinsic device operation ["Explanation of anomalous current gain observed in GaN based bipolar transistors", Xing et al. IEEE Elect. Dev. Lett. 24(1) 2003:p.4-6]. At intermediate current levels, owing to enhanced ionization of Mg in the base, the HBTs show an increase in current gain resulting from mitigated current crowding, and the BJTs show a decrease in current gain resulting from reduction of emitter injection coefficient. The offset voltage dependence on temperature is also explained.


Sign in / Sign up

Export Citation Format

Share Document