scholarly journals Isolation of 6-hydroxy-L-tryptophan from the fruiting body of Lyophyllum decastes for use as a tyrosinase inhibitor

2019 ◽  
Vol 83 (10) ◽  
pp. 1800-1806 ◽  
Author(s):  
Atsushi Ishihara ◽  
Naomi Sugai ◽  
Tomohiro Bito ◽  
Naoki Ube ◽  
Kotomi Ueno ◽  
...  
2019 ◽  
Vol 18 (2) ◽  
pp. 152-157
Author(s):  
Zeng Xianlu ◽  
Han Fei ◽  
Zhong Yanmei

In order to harvest selenium-enriched fruiting body and spores of Ganoderma lingzhi and spent medium, G. lingzhi was cultivated in kudzu vine as substrate and the bio-transformation of selenite was evaluated. The growth medium consisted of Kudzu vine supplemented with 20% wheat bran or sawdust or none. The growth medium was supplemented with 0, 10, 20, 30, and 50 mg/kg of sodium selenite. We found a significant difference in spawn run speed, fruiting body and spore yields when Kudzu vine was supplemented with wheat bran or sawdust. However, when whole-kudzu vine was used alone as substrate, it resulted in a significantly lower spawn run speed, fruiting body, and spore yields compared with kudzu vine + sawdust substrate and kudzu vine + wheat bran substrate. The selenium content in fruiting body and spores increased with increasing sodium selenite supplementation and approximately equaled half of the selenium in the substrate. No selenite was detected in both the fruiting body and spores. However, in the spent medium when sodium selenite was supplemented at 10, 20, 30, 50 mg/kg, the residual selenite concentration decreased to 0.45, 0.72, 1.29, and 1.95 mg/kg, respectively, suggesting a higher selenite transformation (92.27–93.57%). In conclusion, if Ganoderma fruiting body and spores were to be harvested for human consumption, approximately 50 mg/kg selenite should be added to the growth substrate. On the other hand, if the spent medium was to be used as an organic selenium source, the optimal sodium selenite supplementation level would be 10 mg/kg.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 674
Author(s):  
Shilpi Goenka ◽  
Francis Johnson ◽  
Sanford R. Simon

Skin hyperpigmentation disorders arise due to excessive production of the macromolecular pigment melanin catalyzed by the enzyme tyrosinase. Recently, the therapeutic use of curcumin for inhibiting tyrosinase activity and production of melanin have been recognized, but poor stability and solubility have limited its use, which has inspired synthesis of curcumin analogs. Here, we investigated four novel chemically modified curcumin (CMC) derivatives (CMC2.14, CMC2.5, CMC2.23 and CMC2.24) and compared them to the parent compound curcumin (PC) for inhibition of in vitro tyrosinase activity using two substrates for monophenolase and diphenolase activities of the enzyme and for diminution of cellular melanogenesis. Enzyme kinetics were analyzed using Lineweaver-Burk and Dixon plots and nonlinear curve-fitting to determine the mechanism for tyrosinase inhibition. Copper chelating activity, using pyrocatechol violet dye indicator assay, and antioxidant activity, using a DPPH radical scavenging assay, were also conducted. Next, the capacity of these derivatives to inhibit tyrosinase-catalyzed melanogenesis was studied in B16F10 mouse melanoma cells and the mechanisms of inhibition were elucidated. Inhibition mechanisms were studied by measuring intracellular tyrosinase activity, cell-free and intracellular α-glucosidase enzyme activity, and effects on MITF protein level and cAMP maturation factor. Our results showed that CMC2.24 showed the greatest efficacy as a tyrosinase inhibitor of all the CMCs and was better than PC as well as a popular tyrosinase inhibitor-kojic acid. Both CMC2.24 and CMC2.23 inhibited tyrosinase enzyme activity by a mixed mode of inhibition with a predominant competitive mode. In addition, CMC2.24 as well as CMC2.23 showed a comparable robust efficacy in inhibiting melanogenesis in cultured melanocytes. Furthermore, after removal of CMC2.24 or CMC2.23 from the medium, we could demonstrate a partial recovery of the suppressed intracellular tyrosinase activity in the melanocytes. Our results provide a proof-of-principle for the novel use of the CMCs that shows them to be far superior to the parent compound, curcumin, for skin depigmentation.


2021 ◽  
Author(s):  
Xinling Song ◽  
Wenxue Sun ◽  
Wenxin Cai ◽  
Le Jia ◽  
Jianjun Zhang

A polysaccharide named as PFP-1 was isolated from Pleurotus geesteranus fruiting body, and the potential investigations on ameliorating oxidative stress and liver injury against alcoholic liver disease (ALD) were processed...


2002 ◽  
Vol 184 (4) ◽  
pp. 1172-1179 ◽  
Author(s):  
Thomas M. A. Gronewold ◽  
Dale Kaiser

ABSTRACT Cell-bound C-signal guides the building of a fruiting body and triggers the differentiation of myxospores. Earlier work has shown that transcription of the csgA gene, which encodes the C-signal, is directed by four genes of the act operon. To see how expression of the genes encoding components of the aggregation and sporulation processes depends on C-signaling, mutants with loss-of-function mutations in each of the act genes were investigated. These mutations were found to have no effect on genes that are normally expressed up to 3 h into development and are C-signal independent. Neither the time of first expression nor the rate of expression increase was changed in actA, actB, actC, or actD mutant strains. Also, there was no effect on A-signal production, which normally starts before 3 h. By contrast, the null act mutants have striking defects in C-signal production. These mutations changed the expression of four gene reporters that are related to aggregation and sporulation and are expressed at 6 h or later in development. The actA and actB null mutations substantially decreased the expression of all these reporters. The other act null mutations caused either premature expression to wild-type levels (actC) or delayed expression (actD), which ultimately rose to wild-type levels. The pattern of effects on these reporters shows how the C-signal differentially regulates the steps that together build a fruiting body and differentiate spores within it.


Sign in / Sign up

Export Citation Format

Share Document