On the mechanism of wear resistance enhancement of tool steels by deep cryogenic treatment

2012 ◽  
Vol 92 (6) ◽  
pp. 295-303 ◽  
Author(s):  
D. Das ◽  
K.K. Ray
Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1038 ◽  
Author(s):  
Pello Jimbert ◽  
Maider Iturrondobeitia ◽  
Julen Ibarretxe ◽  
Roberto Fernandez-Martinez

The effects of deep cryogenic treatment (DCT) on the wear behavior of different tool steels have been widely reported in the scientific literature with uneven results. Some tool steels show a significant improvement in their wear resistance when they have been cryogenically treated while others exhibit no relevant amelioration or even a reduction in their wear resistance. In this study, the influence of DCT was investigated for a grade that has been barely studied in the scientific literature, the AISI A8 air-hardening medium-alloy cold work tool steel. Several aspects were analyzed in the present work: the wear resistance of the alloy, the internal residual stress, and finally the secondary carbide precipitation in terms of lengths and occupied area and its distribution into the microstructure. The results revealed a reduction in the wear rate of about 14% when the AISI A8 was cryogenically treated before tempering. The number of carbides that precipitated into the microstructure was 6% higher for the cryogenically treated samples, increasing from 0.68% to 0.73% of the total area they covered. Furthermore, the distribution of the carbides into the microstructure was more homogenous for the cryogenically treated samples.


2010 ◽  
Vol 117 ◽  
pp. 49-54 ◽  
Author(s):  
Debdulal Das ◽  
Apurba Kishore Dutta ◽  
Kalyan Kumar Ray

This study aims to reveal the underlying mechanism associated with the enhancement of wear resistance of tool steels by deep cryogenic treatment and to resolve the issue of reported varied degree of improvement in wear resistance through structure-property correlation of cryotreated vis-à-vis conventionally treated AISI D2 steel. Microstructures of heat treated specimens have been characterized employing various techniques with specific emphasis on quantitative estimation of the characteristics of secondary carbides. Evaluations of properties include measurements of bulk hardness, apparent strength of the matrix, fracture toughness and dry sliding wear resistance under wide rage of normal loads supplemented by in-depth characterizations of worn surfaces, wear debris and subsurfaces of worn specimens in order to identify the operative mode and mechanism of wear. It has been demonstrated that the favorable modifications of the precipitation behavior of secondary carbides in addition to removal of retained austenite are the governing mechanisms for the enhancement of wear resistance of tool steels by deep cryogenic treatment. The cause of the reported varied degree of improvement in wear resistance by deep cryogenic treatment has been explained by disparity of the operative modes and mechanisms of wear.


2020 ◽  
Vol 75 (5) ◽  
pp. 73-93
Author(s):  
Alwin Schulz ◽  
Chengsong Cui ◽  
Matthias Steinbacher ◽  
Tuncer Ümit ◽  
Martin Wunde ◽  
...  

Abstract In this work, the influence of a cryogenic treatment on the microstructure, mechanical properties and wear resistance of the high-alloyed tool steels X38CrMoV5-3, X153CrMoV12 and ~X190CrVMo20-4 were investigated. Based on tempering curves of the steels, the heat treatment parameters were determined for the mechanical and wear specimens so that the conventionally heat-treated steels and the cryogenically treated steels featured similar hardness. The investigations showed that an almost complete transformation of retained austenite and a more homogeneous distribution of secondary carbides in the microstructure could be achieved by incorporating a cryogenic treatment. However, the cryogenic treatment does not show significantly positive effects on the investigated mechanical properties and wear resistance of the tool steels. The wear resistance of the samples was dominated by primary carbides. The cryogenic treatment would have a positive effect on large tool components with large wall thicknesses in terms of uniform and complete transformation of retained austenite throughout the entire components.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1257-1263
Author(s):  
Cosme Roberto Moreira Silva ◽  
Tiago F.O. Melo ◽  
José A. Araújo ◽  
J.L.A. Ferreira ◽  
S.J. Gobbi

Wear resistance of tool steels can be increased with deep cryogenic treatment (DCT) application. Mechanisms related to DCT are still not completely understood. Microabrasive wear resistance of cryogenically treated samples of AISI D2 steel was evaluated in terms of austenitization temperature at heat treatment cycle and quenching steps related to DCT. X-ray difractometry, scanning and optical microscopy and quantitative evaluation of carbides with image analysis were carried out aiming material characterization. For samples subjected to higher austenitization temperatures, the DCT treatment does not increase abrasive wear resistance. For samples treated at lower austenitization temperature, the DCT treatment results on 44% increase at abrasive resistance. This effect is correlated to the increase of the amount of fine carbides distributed at samples matrices cryogenically treated.


2021 ◽  
Vol 1016 ◽  
pp. 1423-1429
Author(s):  
Kaweewat Worasaen ◽  
Andreas Stark ◽  
Karuna Tuchinda ◽  
Piyada Suwanpinij

A matrix type high speed steel YXR3 designed for a combination of wear resistance and toughness is investigated for its mechanical properties after hardening by deep cryogenic treatment follow by tempering. The deep cryogenic quenching carried out at -200 °C for 36 hours and the single step tempering results in an obvious improvement in wear resistance while balancing the toughness, comparing with the conventional quenching followed by a double tempering treatment. The quantitative image analysis reveals little difference in the MC carbide size distribution between tempering at different temperatures. The synchrotron high energy XRD confirms the MC type carbide with some evolution in its orientation together with tempered martensite approaching the BCC structure at higher temperatures. In contrary to the conventional quenching and tempering, the lowest tempering temperature at 200 °C yields a moderate drop in hardness with increase in surface toughness proportionally while exhibiting exceptional wear resistance. Such thermal cycle can be recommended for the industry both for the practicality and improved tool life.


2020 ◽  
Vol 1012 ◽  
pp. 331-336
Author(s):  
Marcelo Nava ◽  
Pedro Cunha de Lima ◽  
Emmanuel Pacheco Rocha Lima

Deep cryogenic treatment (DCT) is industrially applied to improve the wear resistance characteristics of tool steels. However, on non-ferrous metals, the knowledge about the obtained characteristics after DCT is limited. The purpose of this work was to investigate how DCT affects the properties and the behavior of the Cu-14Al-4Ni alloy treated at different times and after thermomechanical cycling was performed. In the present investigation, there was performed a comparative experimental analysis of the transformation temperatures, microhardness and shape recovery capacity of the alloy obtained by smelting, treated by DCT and thermomechanically cycled. The DCT provided the stabilization of the martensitic phase β'1 and, consequently, the stabilization of the phase transformation temperatures and the shape recovery capacity of the shape memory effect of the alloy, increasing the alloy life.


2019 ◽  
Vol 36 (2) ◽  
pp. 206-215 ◽  
Author(s):  
Zhaobing Cai ◽  
Ran Chen ◽  
Jianguo Qian ◽  
Shujing Zheng ◽  
Shengyu Chen ◽  
...  

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 808 ◽  
Author(s):  
Binzhou Li ◽  
Changsheng Li ◽  
Yu Wang ◽  
Xin Jin

This paper investigated the response of carburized 20CrNi2MoV steel to cryogenic treatment including microstructure and wear resistance. Two cryogenic treatment methods including cryogenic treatment at −80 °C (CT) and deep cryogenic treatment at −196 °C (DCT) as well as conventional heat treatment (CHT) were carried out after carburizing process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffractometry (XRD) were employed for microstructure characterization. The wear resistance was investigated by ball-on-disc sliding wear test on a multi-functional tribometer. The results show that the wear resistance of the experimental steel has been improved by 17% due to CT and by 25.5% due to DCT when compared to CHT. This significant improvement in wear resistance after cryogenic treatment is attributed to the microstructural changes including the finer martensitic structure, the reduction of retained austenite and the development of fine and more numerous carbides. Among these factors, the precipitation of fine carbides plays a more prominent role in enhancing wear resistance.


Sign in / Sign up

Export Citation Format

Share Document