Normal endometrial stromal cells regulate 17β-estradiol-induced epithelial-mesenchymal transition via slug and E-cadherin in endometrial adenocarcinoma cells in vitro

2016 ◽  
Vol 33 (1) ◽  
pp. 82-86 ◽  
Author(s):  
Hui Zhang ◽  
Hongyan Li ◽  
Shasha Qi ◽  
Zhao Liu ◽  
Yibing Fu ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Qin Yu ◽  
Jianzhang Wang ◽  
Tiantian Li ◽  
Xinxin Xu ◽  
Xinyue Guo ◽  
...  

Endometrial adenocarcinoma is one of the most prevalent female reproductive tract cancers in the world, and the development of effective treatment is still the main goal of its current research. Epithelial-mesenchymal transition (EMT) plays a significant part in the occurrence and development of epithelial carcinoma, including endometrial adenocarcinoma. Recepteur d’origine nantais (RON) induces EMT and promotes proliferation, migration, and invasion in various epithelial-derived cancers, but its role in endometrial adenocarcinoma is still poorly studied. The purpose of this study is to verify the overexpression of RON in endometrial adenocarcinoma and to explore its specific roles. RON expression in tumor lesions was verified by immunohistochemical staining, HEC-1B cells were used to construct stable cell lines with RON overexpression or knockdown to investigate the effects of RON on the function of endometrial adenocarcinoma cells, and xenotransplantation experiment was carried out in nude mice to explore the effect of RON on the growth of endometrial adenocarcinoma in vivo. This study revealed that RON could promote the proliferation, migration, and invasion of HEC-1B cells and induce EMT, and these effects were regulated through the Smad pathway. RON overexpression could promote growth of endometrial adenocarcinoma cells in nude mice, while its inhibitor BMS777607 could restrict this role. RON played an important role in endometrial adenocarcinoma and had a potential to become a new therapeutic target for endometrial adenocarcinoma.


2021 ◽  
Author(s):  
Jing Yan ◽  
Shuli Zou ◽  
Bei Xie ◽  
Ye Tian ◽  
Zhiheng Peng ◽  
...  

Abstract Background There are various interventions to establish the Liver cancer epithelial-mesenchymal transition (EMT) models. However, the ideal biomarkers for unique model are not well established. Further studies are necessary to evaluation of effective EMT biomarkers under different interventions in vitro studies. A meta-analysis was performed to evaluate the performance of different biomarkers in HepG2 cells during EMT under multiple interventions. Methods PubMed, Web of Science, Embase, the China National Knowledge Infrastructure (CNKI), the China Biology Medicine disc (CBM), Wan Fang Data, and VIP databases were systematically searched from inception to June 14, 2020 by two independent reviewers. Results A total of 58 studies were included in the meta-analysis. Our study showed that E-cadherin responds well to the intervention of medication, genetic intervention, gene knockout/knockdown, hypoxia, and other tumor microenvironments, as well as non-coding RNA (ncRNA) overexpression and silencing. N-cadherin can effectively evaluate the intervention effect of medication, genetic intervention, hypoxia and other tumor microenvironments, as well as ncRNA overexpression. Vimentin reflects the effects of medication, pro-EMT genetic intervention and gene knockout/knockdown, anti-EMT ncRNA overexpression and anti-EMT ncRNA silencing and hypoxia. Snail only responds to the intervention of anti-EMT genetic intervention and gene knockout/knockdown, tumor microenvironments other than hypoxia, anti-EMT ncRNA overexpression and ncRNA silencing. Conclusions Our results shows that some medicine, some gene, microenvironment and some ncRNA can effectively induce/inhibit EMT process. E-cadherin, N-cadherin, Vimentin and Snail are effective biomarkers during this process. They respond differently to different intervention. Therefore, different biomarkers should be chosen under different intervention based on their performance.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2021 ◽  
Author(s):  
Chi-Chung Wang ◽  
Yuan-Ling Hsu ◽  
Chi-Jen Chang ◽  
Chia-Jen Wang ◽  
Tzu-Hung Hsiao ◽  
...  

Metastasis is a predominant cause of cancer death and the major challenge in treating lung adenocarcinoma (LADC). Therefore, exploring new metastasis-related genes and their action mechanisms may provide new insights for developing a new combative approach to treat lung cancer. Previously, our research team discovered that the expression of the inhibitor of DNA binding 4 (Id4) was inversely related to cell invasiveness in LADC cells by cDNA microarray screening. However, the functional role of Id4 and its mechanism of action in lung cancer metastasis remain unclear. In this study, we report that the expression of Id4 could attenuate cell migration and invasion in vitro and cancer metastasis in vivo. Detailed analyses indicated that Id4 could promote E-cadherin expression through the binding of Slug, cause the occurrence of mesenchymal-epithelial transition (MET), and inhibit cancer metastasis. Moreover, the examination of the gene expression database (GSE31210) also revealed that high-level expression of Id4/E-cadherin and low-level expression of Slug were associated with a better clinical outcome in LADC patients. In summary, Id4 may act as a metastatic suppressor, which could not only be used as an independent predictor but also serve as a potential therapeutic for LADC treatment.


2019 ◽  
Vol 11 (6) ◽  
pp. 251-263 ◽  
Author(s):  
Federico Bocci ◽  
Satyendra C Tripathi ◽  
Samuel A Vilchez Mercedes ◽  
Jason T George ◽  
Julian P Casabar ◽  
...  

Abstract The epithelial-mesenchymal transition (EMT) is a key process implicated in cancer metastasis and therapy resistance. Recent studies have emphasized that cells can undergo partial EMT to attain a hybrid epithelial/mesenchymal (E/M) phenotype – a cornerstone of tumour aggressiveness and poor prognosis. These cells can have enhanced tumour-initiation potential as compared to purely epithelial or mesenchymal ones and can integrate the properties of cell-cell adhesion and motility that facilitates collective cell migration leading to clusters of circulating tumour cells (CTCs) – the prevalent mode of metastasis. Thus, identifying the molecular players that can enable cells to maintain a hybrid E/M phenotype is crucial to curb the metastatic load. Using an integrated computational-experimental approach, we show that the transcription factor NRF2 can prevent a complete EMT and instead stabilize a hybrid E/M phenotype. Knockdown of NRF2 in hybrid E/M non-small cell lung cancer cells H1975 and bladder cancer cells RT4 destabilized a hybrid E/M phenotype and compromised the ability to collectively migrate to close a wound in vitro. Notably, while NRF2 knockout simultaneously downregulated E-cadherin and ZEB-1, overexpression of NRF2 enriched for a hybrid E/M phenotype by simultaneously upregulating both E-cadherin and ZEB-1 in individual RT4 cells. Further, we predict that NRF2 is maximally expressed in hybrid E/M phenotype(s) and demonstrate that this biphasic dynamic arises from the interconnections among NRF2 and the EMT regulatory circuit. Finally, clinical records from multiple datasets suggest a correlation between a hybrid E/M phenotype, high levels of NRF2 and its targets and poor survival, further strengthening the emerging notion that hybrid E/M phenotype(s) may occupy the ‘metastatic sweet spot’.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Shalini Singh ◽  
Isabella W. Y. Mak ◽  
Divya Handa ◽  
Michelle Ghert

Giant cell tumor of bone (GCT) is a bone tumor consisting of numerous multinucleated osteoclastic giant cells involved in bone resorption and neoplastic osteoblast-like stromal cells responsible for tumor growth. The tumor occasionally metastasizes to the lung; however, factors leading to metastasis in this tumor are unknown. The TWIST-1 protein (also referred to as TWIST) has been suggested to be involved in epithelial-mesenchymal transition (EMT) and tumor progression in some cancers. In this study we investigated the functional role of TWIST in GCT cell angiogenesis and migration. Overexpression of TWIST in neoplastic GCT stromal cells significantly increased mRNA and protein expression of VEGF and VEGFR1 in vitro, whereas knockdown of TWIST resulted in decreased VEGF and VEGFR1 expression. A stable cell line with TWIST overexpression resulted in features of EMT including increased cell migration and downregulation of E-cadherin. The results of our study indicate that TWIST may play an important role in angiogenesis and cell migration in GCT.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Ke Zhang ◽  
Hao Zhang ◽  
Xun Zhou ◽  
Wen-bin Tang ◽  
Li Xiao ◽  
...  

Background. microRNA (miRNA, miR) are thought to interact with multiple mRNAs which are involved in the EMT process. But the role of miRNAs in peritoneal fibrosis has remained unknown.Objective. To determine if miRNA589 regulates the EMT induced by TGFβ1 in human peritoneal mesothelial cell line (HMrSV5 cells).Methods. 1. Level of miR589 was detected in both human peritoneal mesothelial cells (HPMCs) isolated from continuous ambulatory peritoneal dialysis (CAPD) patients’ effluent and HMrSV5 cells treated with or without TGFβ1. 2. HMrSV5 cells were divided into three groups: control group, TGFβ1 group, and pre-miR-589+TGFβ1 group. The level of miRNA589 was determined by realtime PCR. The expressions of ZO-1, vimentin, and E-cadherin in HPMCs were detected, respectively.Results. Decreased level of miRNA589 was obtained in either HPMCs of long-term CAPD patients or HMrSV5 cells treated with TGFβ1. In vitro, TGFβ1 led to upregulation of vimentin and downregulation of ZO-1 as well as E-cadherin in HMrSV5 cells, which suggested EMT, was induced. The changes were accompanied with notably decreased level of miRNA589 in HMrSV5 cells treated with TGFβ1. Overexpression of miRNA589 by transfection with pre-miRNA589 partially reversed these EMT changes.Conclusion. miRNA589 mediates TGFβ1 induced EMT in human peritoneal mesothelial cells.


Marine Drugs ◽  
2019 ◽  
Vol 17 (5) ◽  
pp. 305 ◽  
Author(s):  
Shiqi Lin ◽  
Caiyun Zhang ◽  
Fangyuan Liu ◽  
Jiahui Ma ◽  
Fujuan Jia ◽  
...  

Actinomycin V, an analog of actinomycin D produced by the marine-derived actinomycete Streptomyces sp., possessing a 4-ketoproline instead of a 4-proline in actinomycin D. In this study, the involvement of snail/slug-mediated epithelial-mesenchymal transition (EMT) in the anti-migration and -invasion actions of actinomycin V was investigated in human breast cancer MDA-MB-231 cells in vitro. Cell proliferation effect was evaluated by 3-(4,5-Dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay. Wound-healing and Transwell assay were performed to investigate the anti-migration and -invasion effects of actinomycin V. Western blotting was used to detect the expression levels of E-cadherin, N-cadherin, vimentin, snail, slug, zinc finger E-box binding homeobox 1 (ZEB1), and twist proteins and the mRNA levels were detected by rt-PCR. Actinomycin V showed stronger cytotoxic activity than that of actinomycin D. Actinomycin V up-regulated both of the protein and mRNA expression levels of E-cadherin and down-regulated that of N-cadherin and vimentin in the same cells. In this connection, actinomycin V decreased the snail and slug protein expression, and consequently inhibited cells EMT procession. Our results suggest that actinomycin V inhibits EMT-mediated migration and invasion via decreasing snail and slug expression, which exhibits therapeutic potential for the treatment of breast cancer and further toxicity investigation in vivo is needed.


Sign in / Sign up

Export Citation Format

Share Document