Essential Oil Yield and Composition of Moldavian Balm (Dracocephalum moldavica L.) As Affected by Inoculation Treatments Under Drought Stress Condition

2020 ◽  
Vol 23 (4) ◽  
pp. 728-742
Author(s):  
Rouhollah Amini ◽  
Parisa Zafarani-Moattar ◽  
Mohammad Reza Shakiba ◽  
Mohammad Reza Sarikhani
2017 ◽  
Vol 5 (5) ◽  
pp. 407-415 ◽  
Author(s):  
Zohreh Emami Bistgani ◽  
Seyed Ataollah Siadat ◽  
Abdolmehdi Bakhshandeh ◽  
Abdollah Ghasemi Pirbalouti ◽  
Masoud Hashemi

2019 ◽  
Vol 8 (2) ◽  
pp. 90-100
Author(s):  
Farhad Masoudi Sadaghiani ◽  
Majid Amini Dehaghi ◽  
Alireza Pirzad ◽  
Mohammad Hossein Fotokian

Introduction: Chamomile is one of the oldest and most valuable medicinal plants from the Asteraceae family. In addition to pharmaceutical uses, its essential oil is extensively used in perfumery, cosmetics, food industry and aromatherapy. This experiment was conducted with the aim of investigating the effect of osmolytes foliar application on biochemical characteristics, and the yield of German chamomile under drought stress conditions. Methods: The experiment was conducted as a split plot with randomized complete block design with three replications during the 2016-2017 growing season. Three levels of irrigation, 50 (control), 100 (mild stress) and 150 mm (severe stress) evaporation from evaporation pan class A, and spraying treatments, NS (no-spraying), W (distilled water), MeJA (methyl jasmonate), SA (salicylic acid), HA (humic acid), GB (glycine betaine) and GABA (γ-aminobutyric acid) were considered as the main plots and sub-plots, respectively. Results: Analyzed data indicated that proline, total soluble sugars (TSS), and essential oil yield were enhanced with the increase of drought intensity and the maximum amount was registered under severe stress, while the severe drought caused a substantial reduction in protein concentration of leaves and dried flower yield. Proline concentration of leaves significantly increased with exogenously applied spraying treatments under severe drought. All spraying treatments except GB under severe stress, caused higher TSS concentration than those subjected to mild stress. SA, HA, and GABA treated plants had significantly higher protein concentration compared to NS treatment. Plants that treated with GABA had the highest dried flower and essential oil yield. Conclusion: The present study suggests that osmolytes foliar application can ameliorate the detrimental effects of drought on chamomile plant through alteration in yield and biochemical variables.


2016 ◽  
Vol 107 (1) ◽  
pp. 81 ◽  
Author(s):  
Seyed Hamid MUSTAFAVI ◽  
Fariborz SHEKARI ◽  
Hamid Hatami MALEKI

The objective of this study was to determine the effects of foliar application of polyamines (PAs) on antioxidant defence and essential oil production of valerian (<em>Valeriana officinalis</em> L.) grown under different drought stress treatments (100, 70, 50 and 30% available water content). This study was carried out using pots in greenhouse condition. Drought–stressed valerian seedlings were sprayed with 1 mM concentration of each putrescine (Put), spermidine (Spd) and spermine (Spm). The results showed that drought stress significantly affected most biochemical characteristics of valerian plants. Characteristics including leaf relative water content, chlorophyll a and b contents were decreased, while carotenoids and electrolyte leakage were increased with the increase of water stress. In this research, defensive characteristics comprising proline content, soluble sugars, catalase, and ascorbate peroxidase were increased followed by drought stress to ameliorate the adverse effect of it.  Results revealed that foliar application of Spd and Spm provoked the antioxidant enzymes activity as well as proline accumulation in valerian which alleviate the membrane damages. Consequently, Spd and Spm increased photosynthetic pigments which act as energy supply for plant growth and production. Here, putrescine had detrimental effects on CAT activity and Chl a content. Albeit, PAs presented remarkable effects under moderate drought stress condition but it showed reverse trends in severe drought stress condition.  In terms of quantity and quality yield, drought stress reduced root growth but increased the concentration of essential oils. PAs are able to alleviate water deficit-induced diminish root growth. These results suggest that in moderate drought stress, growers can use PAs to increase productivity valerian.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huimin Zhang ◽  
Hongguang Yan ◽  
Quan Li ◽  
Hui Lin ◽  
Xiaopeng Wen

AbstractThe floral fragrance of plants is an important indicator in their evaluation. The aroma of sweet cherry flowers is mainly derived from their essential oil. In this study, based on the results of a single-factor experiment, a Box–Behnken design was adopted for ultrasound- and microwave-assisted extraction of essential oil from sweet cherry flowers of the Brooks cultivar. With the objective of extracting the maximum essential oil yield (w/w), the optimal extraction process conditions were a liquid–solid ratio of 52 mL g−1, an extraction time of 27 min, and a microwave power of 435 W. The essential oil yield was 1.23%, which was close to the theoretical prediction. The volatile organic compounds (VOCs) of the sweet cherry flowers of four cultivars (Brooks, Black Pearl, Tieton and Summit) were identified via headspace solid phase microextraction (SPME) and gas chromatography–mass spectrometry (GC–MS). The results showed that a total of 155 VOCs were identified and classified in the essential oil from sweet cherry flowers of four cultivars, 65 of which were shared among the cultivars. The highest contents of VOCs were aldehydes, alcohols, ketones and esters. Ethanol, linalool, lilac alcohol, acetaldehyde, (E)-2-hexenal, benzaldehyde and dimethyl sulfide were the major volatiles, which were mainly responsible for the characteristic aroma of sweet cherry flowers. It was concluded that the VOCs of sweet cherry flowers were qualitatively similar; however, relative content differences were observed in the four cultivars. This study provides a theoretical basis for the metabolism and regulation of the VOCs of sweet cherry flowers.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1397
Author(s):  
William N. Setzer ◽  
Lam Duong ◽  
Trang Pham ◽  
Ambika Poudel ◽  
Cuong Nguyen ◽  
...  

Virginia mountain mint (Pycnanthemum virginianum) is a peppermint-flavored aromatic herb of the Lamiaceae and is mainly used for culinary, medicinal, aromatic, and ornamental purposes. North Alabama’s climate is conducive to growing mint for essential oils used in culinary, confectionery, and medicinal purposes. There is, however, a need for varieties of P. virginianum that can be adapted and easily grown for production in North Alabama. Towards this end, four field-grown varieties with three harvesting times (M1H1, M1H2, M1H3; M2H1, M2H2, M2H3; M3H1, M3H2, M3H3, M4H1, M4H2, M4H3) were evaluated for relative differences in essential oil yield and composition. Thirty-day-old greenhouse-grown plants of the four varieties were transplanted on raised beds in the field at the Alabama A & M University Research Station in North Alabama. The plots were arranged in a randomized complete block with three replications. The study’s objective was to compare the four varieties for essential oil yield and their composition at three harvest times, 135, 155, and 170 days after planting (DAP). Essential oils were obtained by hydrodistillation with continuous extraction with dichloromethane using a Likens–Nickerson apparatus and analyzed by gas chromatographic techniques. At the first harvest, the essential oil yield of the four varieties showed that M1H1 had a yield of 1.15%, higher than M2H1, M3H1, and M4H1 with 0.91, 0.76, and 1.03%, respectively. The isomenthone concentrations increased dramatically through the season in M1 (M1H1, M1H2, M1H3) by 19.93, 54.7, and 69.31%, and M3 (M3H1, M3H2, M3H3) by 1.81, 48.02, and 65.83%, respectively. However, it increased only slightly in M2 and M4. The thymol concentration decreased slightly but not significantly in all four varieties; the thymol in M2 and M4 was very high compared with M1 and M3. The study showed that mountain mint offers potential for production in North Alabama. Two varieties, M1 and M3, merit further studies to determine yield stability, essential oil yield, composition, and cultivation development practices.


Sign in / Sign up

Export Citation Format

Share Document