Editorial Comment: Stromal Cell Types: Characterization and Function In Situ and In Vitro

Hematology ◽  
1999 ◽  
Vol 4 (3) ◽  
pp. 241-256 ◽  
Author(s):  
Norman S. Wolf
Hematology ◽  
1999 ◽  
Vol 4 (3) ◽  
pp. 239-240
Author(s):  
Joel Greenberger ◽  
Armand Keating
Keyword(s):  

1999 ◽  
Vol 81 (06) ◽  
pp. 951-956 ◽  
Author(s):  
J. Corral ◽  
R. González-Conejero ◽  
J. Rivera ◽  
F. Ortuño ◽  
P. Aparicio ◽  
...  

SummaryThe variability of the platelet GP Ia/IIa density has been associated with the 807 C/T polymorphism (Phe 224) of the GP Ia gene in American Caucasian population. We have investigated the genotype and allelic frequencies of this polymorphism in Spanish Caucasians. The T allele was found in 35% of the 284 blood donors analyzed. We confirmed in 159 healthy subjects a significant association between the 807 C/T polymorphism and the platelet GP Ia density. The T allele correlated with high number of GP Ia molecules on platelet surface. In addition, we observed a similar association of this polymorphism with the expression of this protein in other blood cell types. The platelet responsiveness to collagen was determined by “in vitro” analysis of the platelet activation and aggregation response. We found no significant differences in these functional platelet parameters according to the 807 C/T genotype. Finally, results from 3 case/control studies involving 302 consecutive patients (101 with coronary heart disease, 104 with cerebrovascular disease and 97 with deep venous thrombosis) determined that the 807 C/T polymorphism of the GP Ia gene does not represent a risk factor for arterial or venous thrombosis.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 884
Author(s):  
Marta Cherubini ◽  
Scott Erickson ◽  
Kristina Haase

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.


2018 ◽  
Vol 39 (10) ◽  
pp. 2061-2073 ◽  
Author(s):  
Alicia Requena Jimenez ◽  
Naila Naz ◽  
Jaleel A Miyan

Hydrocephalus (HC) is an imbalance in cerebrospinal fluid (CSF) secretion/absorption resulting in fluid accumulation within the brain with consequential pathophysiology. Our research has identified a unique cerebral folate system in which depletion of CSF 10-formyl-tetrahydrofolate-dehydrogenase (FDH) is associated with cortical progenitor cell-cycle arrest in hydrocephalic Texas (H-Tx) rats. We used tissue culture, immunohistochemistry, in-situ PCR and RT-PCR and found that the in-vitro proliferation of arachnoid cells is highly folate-dependent with exacerbated proliferation occurring in hydrocephalic CSF that has low FDH but high folate-receptor-alpha (FRα) and folate. Adding FDH to this CSF prevented aberrant proliferation indicating a regulatory function of FDH on CSF folate concentration. Arachnoid cells have no detectable mRNA for FRα or FDH, but FDH mRNA is found in the choroid plexus (CP) and CSF microvesicles. Co-localization of FDH, FRα and folate suggests important functions of FDH in cerebral folate transport, buffering and function. In conclusion, abnormal CSF levels of FDH, FRα and folate inhibit cortical cell proliferation but allow uncontrolled arachnoid cell division that should increase fluid absorption by increasing the arachnoid although this fails in the hydrocephalic brain. FDH appears to buffer available folate to control arachnoid proliferation and function.


Development ◽  
1989 ◽  
Vol 106 (3) ◽  
pp. 543-554 ◽  
Author(s):  
A.L. Brice ◽  
J.E. Cheetham ◽  
V.N. Bolton ◽  
N.C. Hill ◽  
P.N. Schofield

The insulin-like growth factors are broadly distributed in the human conceptus and are thought to play a role in the growth and differentiation of tissues during development. Using in situ hybridization we have shown that a wide variety of specific cell types within tissues express the gene for insulin-like growth factor II at times of development from 18 days to 14 weeks of gestation. Examination of blastocysts produced by in vitro fertilization showed no expression, thus bracketing the time of first accumulation of IGF-II mRNA to between 5 and 18 days postfertilization. The pattern of IGF-II expression shows specific age-related differences in different tissues. In the kidney, for example, expression is found in the cells of the metanephric blastema which is dramatically reduced as the blastema differentiates. The reverse is also seen, and we have noted an increase in expression of IGF-II in the cytotrophoblast layer of the placenta with gestational age. The sites of expression do not correlate with areas of either high mitotic activity or specific types of differentiation, but the observed pattern of expression in the kidney, adrenal glands and liver suggests an explanation for the abnormally high IGF-II mRNA expression in developmental tumours such as Wilms' tumour.


Blood ◽  
1974 ◽  
Vol 44 (5) ◽  
pp. 707-713 ◽  
Author(s):  
Michael B. Harris ◽  
Isaac Djerassi ◽  
Elias Schwartz ◽  
Richard K. Root

Abstract Preparation of granulocytes for transfusion in high yield and relatively free of contamination by other cell types has been made possible by the technique of continuous-flow filtration leukapheresis (CFFL). Since previous work suggested that granulocytes collected in this manner may have impaired viability and function, a detailed study of the bactericidal, metabolic, and chemotactic properties of such cells was performed and compared to control cells obtained from the same donors prior to CFFL. The granulocyte percentage of the cell suspensions obtained by CFFL averaged 94.5% ± 1.5% compared to 82.5% ± 1.8% for the controls (p < 0.001) with viability of the PMNs determined by trypan blue exclusion being 97.5% ± 0.9% and 98.2% ± 0.5%, respectively. The phogocytic, metabolic (14C-I-glucose oxidation and protein iodination) and chemotactic properties of both cell types were equivalent in suspensions equalized for granulocyte content. These findings indicate that CFFL technique employed does not impair granulocyte viability or function in vitro. Studies of the in vivo survival and function of CFFL granulocytes are necessary to evaluate their efficacy in combating infection in severely leukopenic patients.


2016 ◽  
Vol 148 (3) ◽  
pp. 253-271 ◽  
Author(s):  
David Fleck ◽  
Nadine Mundt ◽  
Felicitas Bruentgens ◽  
Petra Geilenkirchen ◽  
Patricia A. Machado ◽  
...  

Spermatogenesis ranks among the most complex, yet least understood, developmental processes. The physiological principles that control male germ cell development in mammals are notoriously difficult to unravel, given the intricate anatomy and complex endo- and paracrinology of the testis. Accordingly, we lack a conceptual understanding of the basic signaling mechanisms within the testis, which control the seminiferous epithelial cycle and thus govern spermatogenesis. Here, we address paracrine signal transduction in undifferentiated male germ cells from an electrophysiological perspective. We identify distinct purinergic signaling pathways in prepubescent mouse spermatogonia, both in vitro and in situ. ATP—a dynamic, widespread, and evolutionary conserved mediator of cell to cell communication in various developmental contexts—activates at least two different spermatogonial purinoceptor isoforms. Both receptors operate within nonoverlapping stimulus concentration ranges, display distinct response kinetics and, in the juvenile seminiferous cord, are uniquely expressed in spermatogonia. We further find that spermatogonia express Ca2+-activated large-conductance K+ channels that appear to function as a safeguard against prolonged ATP-dependent depolarization. Quantitative purine measurements additionally suggest testicular ATP-induced ATP release, a mechanism that could increase the paracrine radius of initially localized signaling events. Moreover, we establish a novel seminiferous tubule slice preparation that allows targeted electrophysiological recordings from identified testicular cell types in an intact epithelial environment. This unique approach not only confirms our in vitro findings, but also supports the notion of purinergic signaling during the early stages of spermatogenesis.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Julie Williams ◽  
Sanlin Robinson ◽  
Babak Alaei ◽  
Kimberly Homan ◽  
Maryam Clausen ◽  
...  

Abstract Background and Aims Questions abound regarding the translation of in vitro 2D cell culture systems to the human setting. This is especially true of the kidney in which there is a complex hierarchical structure and a multitude of cell types. While it is well accepted that extracellular matrix plays a large part in directing cellular physiology emerging research has highlighted the importance of shear stresses and flow rates too. To fully recapitulate the normal gene expression and function of a particular renal cell type how important is it to completely reconstitute their in vivo surroundings? Method To answer this question, we have cultured proximal tubular (PT) epithelial cells in a 3-dimensional channel embedded within an engineered extracellular matrix (ECM) under physiological flow that is colocalised with an adjacent channel lined with renal microvascular endothelial cells that mimic a peritubular capillary. Modifications to the system were made to allow up to 12 chips to be run in parallel in an easily handleable form. After a period of maturation under continuous flow, both cell types were harvested for RNAseq analyses. RNA expression data was compared with cells cultured under static 2-dimensional conditions on plastic or the engineered ECM. Additionally, the perfusion of glucose through this 3D vascularised PT model has been investigated in the presence and absence of known diabetes modulating agents. Results PCA of RNAseq data showed that a) static non-coated, b) static matrix-coated and c) flow matrix-coated conditions separated into 3 distinct groups, while cell co-culture had less impact. Analysis of transcriptomic signatures showed that many genes were modulated by the matrix with additional genes influenced under flow conditions. Several of these genes, classified as transporters, are of particular importance when using this model to assess drug uptake and safety implications. Co-culture regulated some interesting genes, but fewer than anticipated. Preliminary experiments are underway to monitor glucose uptake and transport between tubules under different conditions. Conclusion We have developed a medium throughput system in which matrix and flow modulate gene expression. This system can be used to study the physiology of molecular cross-talk between cells. Ongoing analysis will further consider relevance to human physiology.


2000 ◽  
Vol 348 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Madeleine TOUTANT ◽  
Jeanne-Marie STUDLER ◽  
Ferran BURGAYA ◽  
Alicia COSTA ◽  
Pascal EZAN ◽  
...  

In brain, focal adhesion kinase (FAK) is regulated by neurotransmitters and has a higher molecular mass than in other tissues, due to alternative splicing. Two exons code for additional peptides of six and seven residues (‘boxes’ 6 and 7), located on either side of Tyr397, which increase its autophosphorylation. Using in situ hybridization and a monoclonal antibody (Mab77) which does not recognize FAK containing box 7, we show that, although mRNAs coding for boxes 6 and 7 have different patterns of expression in brain, FAK+6,7 is the main isoform in forebrain neurons. The various FAK isoforms fused to green fluorescent protein were all targeted to focal adhesions in non-neuronal cells. Phosphorylation-state-specific antibodies were used to study in detail the phosphorylation of Tyr397, a critical residue for the activation and function of FAK. The presence of boxes 6 and 7 increased autophosphorylation of Tyr397 independently and additively, whereas they had a weak effect on FAK kinase activity towards poly(Glu,Tyr). Src-family kinases were also able to phosphorylate Tyr397 in cells, but this phosphorylation was decreased in the presence of box 6 or 7, and abolished in the presence of both. Thus the additional exons characteristic of neuronal isoforms of FAK do not alter its targeting, but change dramatically the phosphorylation of Tyr397. They increase its autophosphorylation in vitro and in transfected COS-7 cells, whereas they prevent its phosphorylation when co-transfected with Src-family kinases.


Reproduction ◽  
2017 ◽  
Vol 153 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Chulin Yu ◽  
Meiling Li ◽  
Yue Wang ◽  
Ying Liu ◽  
Chengzhi Yan ◽  
...  

The corticotropin-releasing hormone (CRH) signaling system is involved in numbers of stress-related physiological and pathological responses, including its inhibiting effects on estradiol (E2) synthesis and follicular development in the ovary. In addition, there are reports that microRNAs (miRNAs) can control the function of animal reproductive system. The aim of present study was to investigate the functions of miR-375 and the relationship between miR-375 and CRH signaling molecules in the porcine ovary. First, our common PCR results show that miR-375 and the CRH receptor 1 (CRHR1) are expressed in porcine ovary, whereas CRH receptor 2 (CRHR2) is not detected. We further have located the cell types of miR-375 and CRHR1 by in situ hybridization (ISH), and the results show that miR-375 is located only in the granulosa cells, whereas CRHR1 is positive in all of granulosa cells and oocytes, inferring that miR-375 and CRHR1 are co-localized in granulosa cells. Second, we show that overexpression of miR-375 in cultured granulosa cells suppresses the E2 production, whereas miR-375 knockdown demonstrates the opposite result. Besides, our in vitro results demonstrate that miR-375 mediates the signaling pathway of CRH inhibiting E2 synthesis. Finally, our data show that the action of miR-375 is accomplished by directly binding to the 3′UTR of specificity protein1 (SP1) mRNA to decrease the SP1 protein level. Thus, we conclude that miR-375 is a key factor in regulating E2 synthesis by mediating the CRH signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document