Anti-plasmodial activity of aqueous neem leaf extract mediated green synthesis-based silver nitrate nanoparticles

Author(s):  
Siti Zulaiha Ghazali ◽  
Noor Rasyila Mohamed Noor ◽  
Khairul Mohd Fadzli Mustaffa
2018 ◽  
Vol 772 ◽  
pp. 73-77
Author(s):  
Ruelson S. Solidum ◽  
Arnold C. Alguno ◽  
Rey Capangpangan

We report on the green synthesis of silver nanoparticles utilizing theP.purpureumleaf extract. Controlling the surface plasmon absorption of silver nanoparticles was achieved by regulating the amount of extract concentration and the molarity of silver nitrate solution. The surface plasmon absorption peak is found at around 430nm. The surface plasmon absorption peak have shifted to lower wavelength as the amount of extract is increased, while plasmon absorption peak shifts on a higher wavelength as the concentration of silver nitrate is increased before it stabilized at 430nm. This can be explained in terms of the available nucleation sites promoted by the plant extract as well as the available silver ions present in silver nitrate solution.


2021 ◽  
Vol 36 (1) ◽  
pp. 9-15
Author(s):  
I.N Gana ◽  
V.U Ohageria ◽  
U.G Akpan ◽  
I.J Ani

The use of chemicals for the synthesis of photocatalyts poses threat to the environment. In this study, an active photocatalyst, Dalbejiya Dongoyaro (Azadirachta indica)-based zinc oxide (ZnO) was biosynthesized from zinc acetate dihydrate using sol gel and precipitation methods. The synthesized samples were characterized using Fourier Transfer InfraRed (FTIR), X-Ray Diffractometry (XRD), Brunauer Emmet Teller (BET), Energy Dispersive X-ray Spectroscopy (EDS) and Scanning Electron Microscopy (SEM) characterization techniques. The XRD and SEM analysis of the green synthesized and non-green synthesized ZnO demonstrated the formation of hexagonal wurtzite crystalline structure and agglomerated morphology. EDX analysis demonstrated the existence of Zn and O as the major constituents of the as-synthesized nanoparticles with traces of carbon which could be attributed to the carbon tape of the sample holder. The BET analysis displayed that the surface area of the ZnO nanoparticles increased from 23.75 to 97.08 cm3/g after the green synthesis. Based on the surface area values, it can be derived that neem leaf extract enhanced the surface area of the green synthesized sample. Green synthesis is a promising route for the synthesis of photocatalyst nanoparticle which is environmentally friendly and sustainable method. Keywords: Zinc oxide, Neem leaf extract, Photocatalyt, Degradation, Bio-synthesis


Author(s):  
Shafie Ahamed ◽  
Vignesh Guptha Raju ◽  
Madhuram Krishnamurthy ◽  
V. Naveen Kumar ◽  
K. E. Selvendran

Nigella sativa (kalonji) has been used since ancient times as a nutritional supplement and for treating various infections and chronic ailments. As pathogens become resistant to most drugs, kalonji can be used as an alternative compound in modern medicines. The use of herbal extracts as endodontic irrigants might be beneficial as a part of a growing trend to seek natural remedies for dental treatment. Aim:  To compare the antibacterial potency of Aqueous Nigella sativa extract, Aqueous Neem leaf extract, and 3% Sodium Hypochlorite. Materials and Methods: Test solutions were tested against E. faecalis (ATCC 29212) to check for their Minimum Inhibitory Concentration (MIC) by double dilution method and Kill time to measure their antimicrobial potency to be used as an intracanal irrigant. Results: The study's limitations show that Aqueous Nigella sativa extract has a better antimicrobial effect than Aqueous Neem leaf extract and 3% Sodium Hypochlorite solution against E. faecalis.


2021 ◽  
Author(s):  
Shirisha A ◽  
ANUMOLU VIJAYA KUMAR ◽  
Laxman Chatlod R ◽  
Shashi Kumar M ◽  
Krishnaiah N ◽  
...  

Abstract The present study mainly deals with the green synthesis, characterization and evaluation of antibacterial properties of silver nanoparticles (AgNPs) synthesized by using the leaf extract of Moringa oleifera and fruit extract of Tamarindus indica. In this study for synthesis of silver nanoparticles different ratios of 1mM silver nitrate and Moringa oleifera leaf extract i.e, 95:5, 90:10 and 85: 15 was taken in conical flask and kept for one 1 hr at 25 0 c on magnetic stirrer, out of which 90:10 ratio was selected for further study based on highest peak, good size and stability. Tamarindus indica fruit extract was added to silver nitrate solution till the colour of the solution changes from light brown to chocolate brownish colour. The synthesized silver nanoparticles were characterized by UV-Visible spectroscopy, Zeta potential, size distribution by intensity. The absorption spectrum of the silver nano solution prepared by using Moringa oleifera and Tamarindus indica fruit extract showed a surface plasmon absorption band with maximum of 420 nm and 430 nm respectively indicating the presence of silver nanoparticles. The zeta value of silver nanoparticles synthesized from Moringa oleifera and Tamarindus indica fruit extract was -12.5 mV and -15.5 mV, size of 110.2 nm and 130.2 nm respectively. The antibacterial efficacy of nanosilver was checked by agar well diffusion method, and the silver nanoparticles showed effective antibacterial activity against Staphylococcus aureus.


Author(s):  
Irfana Zahoor ◽  
Farhat Jan ◽  
Ujjawal Sharma ◽  
Kiran K. Sahu ◽  
Amita Sharma ◽  
...  

Background:: There is an urgent need to devise improved alternatives for the efficient delivery of drugs to develop improved therapeutic interventions against cancers. Nanotechnology based drug delivery vehicles are in-use with obvious issues of toxicity and bio-distribution. Therefore, green synthetic routes are being deployed to replace the conventional nanoparticle formulations for effective drug delivery aiming at developing interventional strategies against cancer. Objective:: A simple, viable and fast approach was used for the green synthesis of silver nanoparticles (AgNPs) using aqueous leaf-extract of Viburnum nervosum (VN) and to explore the anti-cancer potential of the crude extract of VN. Methods:: Silver NPs were synthesized by reacting silver nitrate (AgNO3) with leaf extract of VN. Various analytical techniques were used to characterize the AgNPs. Finally, the anti-cancer potential of VN was observed when delivered through AgNPs. Results:: The surface plasmon spectra for AgNPs exhibited absorbance peak at 445 nm, and Fourier-Transform Infrared Spectroscopy investigation revealed presence of biomolecules acting as an effective reducing and capping agent for converting silver nitrate to AgNPs. Further, our results suggest the spherical size of synthesized AgNPs ranging from 12-17 nm. Moreover, in vitro studies conducted for VN extract with breast (MCF-7) and epidermal carcinoma (A431) cells showed biocompatibility. Conclusion:: Doxorubicin loaded AgNPs documented an increased bioavailability of drug compared to the free drug, suggesting the use of AgNPs as “novel drug delivery vectors”.


Author(s):  
DIVYA JYOTHI ◽  
SHERIN P. CHERIYAN ◽  
SHAIKH RAFIYA RAFIK AHMED ◽  
SNEH PRIYA ◽  
JAINEY P. JAMES ◽  
...  

Objective: Current study is aimed at the formulation of silver nanoparticles loaded with the extract of Coleus amboinicus leaf extract by microwave irradiation. A facile and green synthesis of silver nanoparticles by using a biological agent such as plant extracts with the aid of microwave irradiation is proposed as an economical and environmentally friendly approach alternative to chemical and physical methods. Methods: In order to fabricate silver nanoparticles by microwave irradiation, aqueous extract of leaves Coleus amboinicus (CA) were treated with aqueous silver nitrate solution and mixture was placed in the microwave oven for exposure to microwave. Optimizations of the process were carried out by varying the quantity of extract, silver nitrate concentration and duration of microwave irradiation. Formations of nanoparticles were confirmed by UV-visible spectroscopy observing for the presence of surface plasmon resonance (SPR) peak. Nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. Results: Silver nanoparticle showed the SPR optical absorption band peak at 434 nm by UV-Visible spectrophotometer. Reaction mixture containing 2 mmol silver nitrate and 9 ml of extract subjected to microwave irradiation of 60 sec at a temperature of 60 °C was found to be optimised condition, which produced nanoparticles that were spherical in shape and had an average diameter of 15.685 nm. Conclusion: This research study opens an innovative design to progress our understanding of how silver nanoparticles behave can be optimized to improve their surface morphology, which is beneficial to improve its therapeutic effect.


2016 ◽  
Vol 5 (3) ◽  
pp. 103 ◽  
Author(s):  
Alice M. Mweetwa ◽  
Aswell C. Lubungo ◽  
Benson H. Chishala ◽  
Mirriam Phiri

<p>With declining fertility levels of soils and the high cost of agricultural inputs, such as commercial fertilizers and pesticides, the use of organic inputs has increased in Zambia. While neem products have been shown to improve soil fertility status, several negative effects on soil organisms have also been cited. The negative effects have been attributed to several secondary metabolites produced by the neem plant. In Zambia, neem leaf extract is applied by small scale farmers to enhance soil fertility and promote crop productivity. This study reports the suitability of aqueous neem leaf extract as a soil amendment and its effect on soil microbial biomass and activity in local soils. Neem leaves were characterized before being used to prepare aqueous neem extract in the concentrations 2, 5, 10, 15, and 20 % in water. The extract was characterized for selected mineral components and then applied to 5 kg of soil on a weekly basis for five weeks. Each week, for ten weeks, the effect of the extract on microbial biomass and activity were determined using the Chloroform Fumigation and Incubation (CFI) and soil respiration methods, respectively. Selected soil chemical characteristics were determined at the start and end of the experiment. Results indicated that the chemical composition of the neem leaves was comparable to that observed by others and was similar to that of other tree leaves used for preparing leaf extracts. Amending soils with neem did not significantly improve selected chemical properties but only marginally increased soil calcium levels. Neem leaf extract enhanced soil microbial activity up to 10 %, but showed inhibitory effects at 15 and 20 % concentrations. Microbial biomass was also depressed by neem leaf extract at 20 %. The reduction in both microbial activity and biomass was possibly due to the negative effects of the neem secondary metabolites in the leaf extract at these higher concentrations. Although the application of neem leaf extract at 10 % percent or higher can inhibit both microbial biomass and activity, some mineralizable components in the extracts can support growth and activity of some microorganisms in the soil. Based on these results, the application of neem leaf extract at 10 % percent or higher can inhibit both microbial biomass and activity and marginally improve soil Ca levels. The use of neem leaf extract can therefore be of benefit to soils with critically low levels of Ca.</p>


2015 ◽  
Vol 4 (6) ◽  
Author(s):  
Kaushik Roy ◽  
Chandan K. Sarkar ◽  
Chandan K. Ghosh

AbstractIn this study, we for the first time reported green synthesis of silver nanoparticles from silver nitrate solution using leaf extract of


Sign in / Sign up

Export Citation Format

Share Document