Characterisation of fused deposition modeling 3D printers for pharmaceutical and medical applications

2018 ◽  
Vol 23 (10) ◽  
pp. 1136-1145 ◽  
Author(s):  
Tim Feuerbach ◽  
Stefanie Kock ◽  
Markus Thommes
Author(s):  
Anggit Prakasa ◽  
Setya Permana Sutisna ◽  
Anton Royanto Ahmad

<p>The 3D printers process is applied to create prototype components, but at the last 3D Printers are often applied as last products. So, high accuracy is required in this case. In this research will find the optimal<br />setting of the dimensional accuracy 3D printers based fused deposition modeling. The method used is<br />the Taguchi method, the reason for using this method its efficiency, this is because the Orthogonal<br />Array matrix requires less number of experiments than the classical experimental design. Analysis of<br />Variance is also needed in this method to see the factors that significantly influence the response<br />variable. The results of this study indicate that the factors that significantly influence is printspeed by<br />contributing 53.08%, flowrate contributes 16.4%, and temperature heater block contributes 3.85% and<br />optimal setting is temperature heater block 190º, print speed 60mm/s and flowrate 6.28 mm3/s. (A1,<br />C3 dan D2).</p>


2018 ◽  
Vol 919 ◽  
pp. 182-189
Author(s):  
Ivan Molnár ◽  
Róbert Hrušecký ◽  
Ladislav Morovič ◽  
Augustín Görög

This article deals with the observation of shape and dimensional accuracy of parts after manufacturing in certain time intervals. The parts was manufactured by additive manufacturing method Fused Deposition Modeling (FDM). The shape and chosen dimension changes due to material shrinkage was observed on materials, namely Polylactic Acid (PLA) and Polyethylene Terephthalate Glycol (PET-G). These materials rank among health-conscious and usable in some medical applications. The parts were measured by using coordinate measuring machine (CMM) in certain time intervals and the shape and chosen dimensions was compared with the reference computer aided designed (CAD) model.


2020 ◽  
Vol 22 (4) ◽  
pp. 895-908
Author(s):  
M. Ouhsti ◽  
B. El Haddadi ◽  
S. Belhouideg

Abstract3D polymer-based printers have become easily accessible to the public. Usually, the technology used by these 3D printers is Fused Deposition Modelling (FDM). The majority of these 3D printers mainly use acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) to fabricate 3D objects. In order for the printed parts to be useful for specific applications, the mechanical properties of the printed parts must be known. The aim of this study is to determine the tensile strength and elastic modulus of printed materials in polylactic acid (PLA) according to three important printing parameters such as deposition angle, extruder temperature and printing speed. The central composite design (CCD) was used to reduce the number of tensile test experiments. The obtained results show that the mechanical properties of printed parts depend on printing parameters. Empirical models relating response and process parameters are developed. The analysis of variance (ANOVA) was used to test the validity of models relating response and printing parameters. The optimal printing parameters are determined for the desired mechanical properties.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2244
Author(s):  
Yoshiki Ishida ◽  
Daisuke Miura ◽  
Taira Miyasaka ◽  
Akikazu Shinya

Consumer 3D printers have improved considerably due to the evolution of additive manufacturing. This study aimed to examine the accuracy of consumer printers in dental restoration. Cylindrical patterns mimicking a full crown were created and enlarged from 100% to 105% of the original size. Two types of consumer 3D printers, including a fused deposition modeling (FDM) device and a stereolithography (SLA) device, and two types of dental 3D printers, including a multi-jet device and an SLA device, were used to fabricate the patterns. Then, the outer and inner diameters and depths, and surface roughness of the patterns were measured. The changing rates of the outer diameter of models created using dental printers were significantly smaller than those of the models created using consumer printers (p < 0.05). Significantly greater surface roughness was obtained in the tooth axis of the model fabricated using the consumer FDM device (p < 0.05). However, no significant differences were observed on the surface roughness of both axes between the consumer SLA device and the dental devices (p > 0.05). However, FDM showed larger surface roughness than dental devices in both axes (p < 0.05). Thus, the SLA consumer printer can be applied to fabricate resin patterns with enlargement editing of 1–3% along the horizontal axis.


2016 ◽  
Vol 22 (2) ◽  
pp. 387-404 ◽  
Author(s):  
Jonathan Torres ◽  
Matthew Cole ◽  
Allen Owji ◽  
Zachary DeMastry ◽  
Ali P. Gordon

Purpose This paper aims to present the influences of several production variables on the mechanical properties of specimens manufactured using fused deposition modeling (FDM) with polylactic acid (PLA) as a media and relate the practical and experimental implications of these as related to stiffness, strength, ductility and generalized loading. Design/methodology/approach A two-factor-level Taguchi test matrix was defined to allow streamlined mechanical testing of several different fabrication settings using a reduced array of experiments. Specimens were manufactured and tested according to ASTM E8/D638 and E399/D5045 standards for tensile and fracture testing. After initial analysis of mechanical properties derived from mechanical tests, analysis of variance was used to infer optimized production variables for general use and for application/load-specific instances. Findings Production variables are determined to yield optimized mechanical properties under tensile and fracture-type loading as related to orientation of loading and fabrication. Practical implications The relation of production variables and their interactions and the manner in which they influence mechanical properties provide insight to the feasibility of using FDM for rapid manufacturing of components for experimental, commercial or consumer-level use. Originality/value This paper is the first report of research on the characterization of the mechanical properties of PLA coupons manufactured using FDM by the Taguchi method. The investigation is relevant both in commercial and consumer-level aspects, given both the currently increasing utilization of 3D printers for component production and the viability of PLA as a renewable, biocompatible material for use in structural applications.


2021 ◽  
Vol 11 (7) ◽  
pp. 3197
Author(s):  
Jose Luis Saorin ◽  
Manuel Drago Diaz-Alemán ◽  
Jorge De la Torre-Cantero ◽  
Cecile Meier ◽  
Ithaisa Pérez Conesa

The adoption of open-source digital manufacturing technologies in small art workshops may improve their competitiveness. Pieces modeled by computer and made with FDM (Fused Deposition Modeling) 3D printers that use PLA (polylactic acid) can be implemented in the procedures of artistic casting. However, models printed by PLA are limited to approximate minimum sizes of 3 cm, and the optimal layer height resolution is 0.1 mm. These sizes and resolutions are not suitable for creating microsculptures used, in many cases, in jewelry. An alternative to solve this limitation, is to use a DMLS (Direct Metal Laser Sintering) 3D printer. However, due to its high cost, it is a technology that is difficult to introduce in small artistic foundries. This work detailed the design and validation of a DLP (Digital Light Processing) 3D printer, using backlit LCD (Liquid Crystal Display) screens with ultraviolet light. Its development is totally “open source” and is proposed as a kit made up of electronic components, based on Arduino and easy to access mechanical components in the market. Most parts can be manufactured in low cost FDM (Fused Deposition Modeling) 3D printers. The result is an affordable, high resolution (0.021 mm), and open-design printer that can be implemented in artistic contexts.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1304 ◽  
Author(s):  
Agnieszka Haryńska ◽  
Iga Gubanska ◽  
Justyna Kucinska-Lipka ◽  
Helena Janik

The possibility of using additive manufacturing (AM) in the medicine area has created new opportunities in health care. This has contributed to a sharp increase in demand for 3D printers, their systems and materials that are adapted to strict medical requirements. We described herein a medical-grade thermoplastic polyurethane (S-TPU) which was developed and then formed into a filament for Fused Deposition Modeling (FDM) 3D printers during a melt-extrusion process. S-TPU consisting of aliphatic hexamethylene 1,6-diisocyanate (HDI), amorphous α,ω-dihydroxy(ethylene-butylene adipate) (PEBA) and 1,4 butandiol (BDO) as a chain extender, was synthesized without the use of a catalyst. The filament (F-TPU) properties were characterized by rheological, mechanical, physico-chemical and in vitro biological properties. The tests showed biocompatibility of the obtained filament as well as revealed no significant effect of the filament formation process on its properties. This study may contribute to expanding the range of medical-grade flexible filaments for standard low-budget FDM printers.


2017 ◽  
Vol 4 (6) ◽  
pp. 1064-1069 ◽  
Author(s):  
Teunis van Manen ◽  
Shahram Janbaz ◽  
Amir A. Zadpoor

Fused deposition modeling (FDM) enables simultaneous programming and production of thermo-responsive shape-shifting materials.


Sign in / Sign up

Export Citation Format

Share Document