Alternative approaches to treat bacterial infections: targeting quorum-sensing

2020 ◽  
Vol 18 (6) ◽  
pp. 499-510
Author(s):  
Pipat Piewngam ◽  
Janice Chiou ◽  
Priyanka Chatterjee ◽  
Michael Otto
Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Orit Malka ◽  
Dorin Kalson ◽  
Karin Yaniv ◽  
Reut Shafir ◽  
Manikandan Rajendran ◽  
...  

Abstract Background Probiotic milk-fermented microorganism mixtures (e.g., yogurt, kefir) are perceived as contributing to human health, and possibly capable of protecting against bacterial infections. Co-existence of probiotic microorganisms are likely maintained via complex biomolecular mechanisms, secreted metabolites mediating cell-cell communication, and other yet-unknown biochemical pathways. In particular, deciphering molecular mechanisms by which probiotic microorganisms inhibit proliferation of pathogenic bacteria would be highly important for understanding both the potential benefits of probiotic foods as well as maintenance of healthy gut microbiome. Results The microbiome of a unique milk-fermented microorganism mixture was determined, revealing a predominance of the fungus Kluyveromyces marxianus. We further identified a new fungus-secreted metabolite—tryptophol acetate—which inhibits bacterial communication and virulence. We discovered that tryptophol acetate blocks quorum sensing (QS) of several Gram-negative bacteria, particularly Vibrio cholerae, a prominent gut pathogen. Notably, this is the first report of tryptophol acetate production by a yeast and role of the molecule as a signaling agent. Furthermore, mechanisms underscoring the anti-QS and anti-virulence activities of tryptophol acetate were elucidated, specifically down- or upregulation of distinct genes associated with V. cholerae QS and virulence pathways. Conclusions This study illuminates a yet-unrecognized mechanism for cross-kingdom inhibition of pathogenic bacteria cell-cell communication in a probiotic microorganism mixture. A newly identified fungus-secreted molecule—tryptophol acetate—was shown to disrupt quorum sensing pathways of the human gut pathogen V. cholerae. Cross-kingdom interference in quorum sensing may play important roles in enabling microorganism co-existence in multi-population environments, such as probiotic foods and the gut microbiome. This discovery may account for anti-virulence properties of the human microbiome and could aid elucidating health benefits of probiotic products against bacterially associated diseases.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2600
Author(s):  
Fábio G. Martins ◽  
André Melo ◽  
Sérgio F. Sousa

Biofilms are aggregates of microorganisms anchored to a surface and embedded in a self-produced matrix of extracellular polymeric substances and have been associated with 80% of all bacterial infections in humans. Because bacteria in biofilms are less amenable to antibiotic treatment, biofilms have been associated with developing antibiotic resistance, a problem that urges developing new therapeutic options and approaches. Interfering with quorum-sensing (QS), an important process of cell-to-cell communication by bacteria in biofilms is a promising strategy to inhibit biofilm formation and development. Here we describe and apply an in silico computational protocol for identifying novel potential inhibitors of quorum-sensing, using CviR—the quorum-sensing receptor from Chromobacterium violaceum—as a model target. This in silico approach combines protein-ligand docking (with 7 different docking programs/scoring functions), receptor-based virtual screening, molecular dynamic simulations, and free energy calculations. Particular emphasis was dedicated to optimizing the discrimination ability between active/inactive molecules in virtual screening tests using a target-specific training set. Overall, the optimized protocol was used to evaluate 66,461 molecules, including those on the ZINC/FDA-Approved database and to the Mu.Ta.Lig Virtual Chemotheca. Multiple promising compounds were identified, yielding good prospects for future experimental validation and for drug repurposing towards QS inhibition.


10.3823/846 ◽  
2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Abdelraouf A Elmanama ◽  
Suhaila Al-Sheboul ◽  
Renad I Abu-Dan

Abstract Pseudomonas aeruginosa threatens patient’s care. It is considered as the most complicated health care associated pathogen to be eliminated from infection site. The biofilm forming ability of P. aeruginosa, being a major virulence factor for most pathogenic microorganism, protects it from host immunity and contribute to antibiotic resistance of this organism. It is estimated that about 80% of infectious diseases are due to biofilm mode of growth. Biofilm forming ability of bacteria imparts antimicrobial resistance that leads to many persistent and chronic bacterial infections. The world is becoming increasingly under the threat of entering the “post-antibiotic era”, an era in which the rate of death from bacterial infections is higher than from cancer. This review focus on P. aeruginosa biofilm forming ability; definition, developmental stages, and significance. In addition, the quorum sensing and the antibiotic resistance of this pathogen is discussed. Keywords: Biofilm; bacterial adhesion; Pseudomonas aeruginosa; antimicrobial resistance; quorum sensing.


Author(s):  
Mingfang Wang ◽  
Xia Li ◽  
Shihao Song ◽  
Chaoyu Cui ◽  
Lian-Hui Zhang ◽  
...  

It has been demonstrated that quorum sensing (QS) is widely employed by bacterial cells to coordinately regulate various group behaviors. Diffusible signal factor (DSF)-type signals have emerged as a growing family of conserved cell-cell communication signals. In addition to the DSF signal initially identified in Xanthomonas campestris pv. campestris, B urkholderia d iffusible s ignal f actor (BDSF, cis -2-dodecenoic acid) has been recognized as a conserved DSF-type signal with specific characteristics in both signal perception and transduction from DSF signals. Here, we review the history and current progress of the research of this type of signal, especially focusing on its biosynthesis, signaling pathways, and biological functions. We also discuss and explore the huge potential of targeting this kind of QS system as a new therapeutic strategy to control bacterial infections and diseases.


2019 ◽  
Vol 85 (8) ◽  
Author(s):  
Chaoyu Cui ◽  
Shihao Song ◽  
Chunxi Yang ◽  
Xiuyun Sun ◽  
Yutong Huang ◽  
...  

ABSTRACTQuorum sensing (QS) signals are widely used by bacterial pathogens to control biological functions and virulence in response to changes in cell population densities.Burkholderia cenocepaciaemploys a molecular mechanism in which thecis-2-dodecenoic acid (namedBurkholderiadiffusiblesignalfactor [BDSF]) QS system regulatesN-acyl homoserine lactone (AHL) signal production and virulence by modulating intracellular levels of cyclic diguanosine monophosphate (c-di-GMP). Thus, inhibition of BDSF signaling may offer a non-antibiotic-based therapeutic strategy against BDSF-regulated bacterial infections. In this study, we report the synthesis of small-molecule mimics of the BDSF signal and evaluate their ability to inhibit BDSF QS signaling inB. cenocepacia. A novel structural analogue of BDSF, 14-Me-C16:Δ2(cis-14-methylpentadec-2-enoic acid), was observed to inhibit BDSF production and impair BDSF-regulated phenotypes inB. cenocepacia, including motility, biofilm formation, and virulence, while it did not inhibit the growth rate of this pathogen. 14-Me-C16:Δ2also reduced AHL signal production. Genetic and biochemical analyses showed that 14-Me-C16:Δ2inhibited the production of the BDSF and AHL signals by decreasing the expression of their synthase-encoding genes. Notably, 14-Me-C16:Δ2attenuated BDSF-regulated phenotypes in variousBurkholderiaspecies. These findings suggest that 14-Me-C16:Δ2could potentially be developed as a new therapeutic agent against pathogenicBurkholderiaspecies by interfering with their QS signaling.IMPORTANCEBurkholderia cenocepaciais an important opportunistic pathogen which can cause life-threatening infections in susceptible individuals, particularly in cystic fibrosis and immunocompromised patients. It usually employs two types of quorum sensing (QS) systems, including thecis-2-dodecenoic acid (BDSF) system andN-acyl homoserine lactone (AHL) system, to regulate virulence. In this study, we have designed and identified an unsaturated fatty acid compound (cis-14-methylpentadec-2-enoic acid [14-Me-C16:Δ2]) that is capable of interfering withB. cenocepaciaQS signaling and virulence. We demonstrate that 14-Me-C16:Δ2reduced BDSF and AHL signal production inB. cenocepacia. It also impaired QS-regulated phenotypes in variousBurkholderiaspecies. These results suggest that 14-Me-C16:Δ2could interfere with QS signaling in manyBurkholderiaspecies and might be developed as a new antibacterial agent.


2020 ◽  
Vol 74 (1) ◽  
pp. 201-219 ◽  
Author(s):  
Sheyda Azimi ◽  
Alexander D. Klementiev ◽  
Marvin Whiteley ◽  
Stephen P. Diggle

Bacteria are highly interactive and possess an extraordinary repertoire of intercellular communication and social behaviors, including quorum sensing (QS). QS has been studied in detail at the molecular level, so mechanistic details are well understood in many species and are often involved in virulence. The use of different animal host models has demonstrated QS-dependent control of virulence determinants and virulence in several human pathogenic bacteria. QS also controls virulence in several plant pathogenic species. Despite the role QS plays in virulence during animal and plant laboratory-engineered infections, QS mutants are frequently isolated from natural infections, demonstrating that the function of QS during infection and its role in pathogenesis remain poorly understood and are fruitful areas for future research. We discuss the role of QS during infection in various organisms and highlight approaches to better understand QS during human infection. This is an important consideration in an era of growing antimicrobial resistance, when we are looking for new ways to target bacterial infections.


2006 ◽  
Vol 55 (10) ◽  
pp. 1381-1387 ◽  
Author(s):  
Shinichi Miyairi ◽  
Kazuhiro Tateda ◽  
Etsu T. Fuse ◽  
Chihiro Ueda ◽  
Hiroaki Saito ◽  
...  

Quorum-sensing systems have been reported to play a critical role in the pathogenesis of several bacterial infections. Recent data have demonstrated that Pseudomonas N-3-oxododecanoyl-l-homoserine lactone (3-oxo-C12-homoserine lactone, 3-oxo-C12-HSL), but not N-butanoyl-l-homoserine lactone (C4-HSL), induces apoptosis in macrophages and neutrophils. In the present study, the effects of active immunization with 3-oxo-C12-HSL–carrier protein conjugate on acute P. aeruginosa lung infection in mice were investigated. Immunization with 3-oxo-C12-HSL–BSA conjugate (subcutaneous, four times, at 2-week intervals) elaborated significant amounts of specific antibody in serum. Control and immunized mice were intranasally challenged with approximately 3×106 c.f.u. P. aeruginosa PAO1, and survival was then compared. All control mice died by day 2 post bacterial challenge, while 36 % of immunized mice survived to day 4 (P<0.05). Interestingly, bacterial numbers in the lungs did not differ between control and immunized groups, whereas the levels of pulmonary tumour necrosis factor (TNF)-α in the immunized mice were significantly lower than those of control mice (P<0.05). Furthermore, the extractable 3-oxo-C12-HSL levels in serum and lung homogenate were also significantly diminished in the immunized mice. Immune serum completely rescued reduction of cell viability by 3-oxo-C12-HSL-mediated apoptosis in macrophages in vitro. These results demonstrated that specific antibody to 3-oxo-C12-HSL plays a protective role in acute P. aeruginosa infection, probably through blocking of host inflammatory responses, without altering lung bacterial burden. The present data identify a promising potential vaccine strategy targeting bacterial quorum-sensing molecules, including autoinducers.


2015 ◽  
Vol 3 (7) ◽  
pp. 575 ◽  
Author(s):  
Israel Castillo-Juárez ◽  
Toshinari Maeda ◽  
Edna Ayerim Mandujano-Tinoco ◽  
María Tomás ◽  
Berenice Pérez-Eretza ◽  
...  

2009 ◽  
Vol 53 (6) ◽  
pp. 2432-2443 ◽  
Author(s):  
Liang Yang ◽  
Morten Theil Rybtke ◽  
Tim Holm Jakobsen ◽  
Morten Hentzer ◽  
Thomas Bjarnsholt ◽  
...  

ABSTRACT Attenuation of Pseudomonas aeruginosa virulence by the use of small-molecule quorum-sensing inhibitors (referred to as the antipathogenic drug principle) is likely to play a role in future treatment strategies for chronic infections. In this study, structure-based virtual screening was used in a search for putative quorum-sensing inhibitors from a database comprising approved drugs and natural compounds. The database was built from compounds which showed structural similarities to previously reported quorum-sensing inhibitors, the ligand of the P. aeruginosa quorum-sensing receptor LasR, and a quorum-sensing receptor agonist. Six top-ranking compounds, all recognized drugs, were identified and tested for quorum-sensing-inhibitory activity. Three compounds, salicylic acid, nifuroxazide, and chlorzoxazone, showed significant inhibition of quorum-sensing-regulated gene expression and related phenotypes in a dose-dependent manner. These results suggest that the identified compounds have the potential to be used as antipathogenic drugs. Furthermore, the results indicate that structure-based virtual screening is an efficient tool in the search for novel compounds to combat bacterial infections.


2003 ◽  
Vol 47 (6) ◽  
pp. 1979-1983 ◽  
Author(s):  
Andrea Giacometti ◽  
Oscar Cirioni ◽  
Yael Gov ◽  
Roberto Ghiselli ◽  
Maria Simona Del Prete ◽  
...  

ABSTRACT Staphylococcus aureus is a prevalent cause of bacterial infections associated with indwelling medical devices. RNA III inhibiting peptide (RIP) is known to inhibit S. aureus pathogenesis by disrupting quorum-sensing mechanisms. RIP was tested in the present study for its ability to inhibit S. aureus biofilm formation in a rat Dacron graft model. The activity of RIP was synergistic with those of antibiotics for the complete prevention of drug-resistant S. aureus infections.


Sign in / Sign up

Export Citation Format

Share Document