Vibro-acoustic response analysis of fractional railpads in frequency domain

Author(s):  
Ali Hosseinkhani ◽  
Davood Younesian ◽  
Rezgar Shakeri ◽  
Saman Farhangdoust
Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 357
Author(s):  
Ji-Won Jin ◽  
Ki-Weon Kang

A vibration-based energy harvester (VEH) utilizes vibrations originated from various structures and specifically maximizes the displacement of its moving parts, using the resonance between the frequency of external vibration loads from the structure and the natural frequency of VEH to improve power production efficiency. This study presents the procedure to evaluate the structural performance and structural integrity of VEH utilized in a railway vehicle under frequency domain. First of all, a structural performance test was performed to identify the natural frequency and assess the structural response in frequency domain. Then, the static structural analysis was carried out using FE analysis to investigate the failure critical locations (FCLs) and effect of resonance. Finally, we conducted a frequency response analysis to identify the structural response and investigate the structural integrity in frequency domain. Based on these results, the authors assessed the structural performance and integrity of VEHs in two versions.


2018 ◽  
Vol 18 (03) ◽  
pp. 1850037 ◽  
Author(s):  
Ning Su ◽  
Zhenggang Cao ◽  
Yue Wu

Wind-induced response analysis is an important process in the design of large-span roofs. Conventional time-domain methods are computationally more expensive than frequency-domain algorithms; however, the latter are not as accurate because of the ill-treatment of the modal coupling effects. This paper revisited the derivations of the frequency-domain algorithm and proposed a fast algorithm for estimating the dynamic wind-induced response considering duly the modal coupling effects. With the wind load cross-spectra modeled by rational functions, closed-form solutions to the frequency-domain integrals can be calculated by Cauchy’s residue theorem, rather than by numerical integration, thereby reducing the truncation errors and enhancing the efficiency of computation. The algorithm is applied to the analysis of a grandstand roof and a spherical dome. Through comparison with time domain analyses results, the algorithm is proved to be reliable. A criterion of the coupling modal combination was suggested based on the cumulative modal contribution rate of over 70%.


Author(s):  
Christian Siewert ◽  
Lars Panning ◽  
Jörg Wallaschek ◽  
Christoph Richter

In turbomachinery applications, the rotating turbine blades are subjected to high static and dynamic loads. The static loads are due to centrifugal stresses and thermal strains whereas the dynamic loads are caused by the fluctuating gas forces resulting in high vibration amplitudes, which can lead to high cycle fatigue failures. Hence, one of the main tasks in the design of turbomachinery blading is the reduction in the blade vibration amplitudes to avoid high dynamic stresses. Thus, coupling devices like underplatform dampers and tip shrouds are applied to the blading to reduce the vibration amplitudes and, therefore, the dynamic stresses by introducing nonlinear contact forces to the system. In order to predict the resulting vibration amplitudes, a reduced order model of a shrouded turbine blading is presented including a contact model to determine the nonlinear contact forces. To compute the forced response, the resulting nonlinear equations of motion are solved in the frequency domain using the multiharmonic balance method because of the high computational efficiency of this approach. The transformation from the time domain into the frequency domain is done by applying Galerkin’s method in combination with a multiharmonic approximation function for the unknown vibration response. This results in an algebraic system of nonlinear equations in the frequency domain, which has to be solved iteratively in order to compute the vibration response. The presented methodology is applied to the calculation of the forced response of a nonlinear coupled turbine blading in the frequency domain.


Author(s):  
Hoi-Sang Chan ◽  
Evren Armaoğlu ◽  
Matthew Thomson ◽  
Alistair Garner

Abstract The extended lift operation to deliver the Wellbay module (M5) combined with the Flare Tower (M8) from the Miller Platform in the North Sea to the shore using the Semi-Submersible Crane Vessel S7000 was restricted by the clearances between M5/M8 and the vessel crane booms. A method to calculate the clearances of the M5/M8 normal to the vessel crane booms has been developed and used in a frequency-domain response analysis to define operability limits. Investigations based on a series of scale model tests in regular waves and irregular short-crested waves including motion decay tests in calm water, conducted by the Maritime Research Institute (MARIN) in the Netherlands, were also made to further evaluate the behaviour of the suspended M5/M8 on S7000’s main hooks during transit. The time series of decay motions of the suspended M5/M8 obtained from the decay motion tests and a time domain analysis are compared and used to derive rigging damping. The numerical results of the frequency-domain analysis are validated with the experimental data for response amplitude operators (RAOs) found in regular waves and pink noise waves, significant and 3 hour most probable maximum/minimum (MPM) responses of interest in irregular waves.


1996 ◽  
Vol 118 (1) ◽  
pp. 109-114 ◽  
Author(s):  
H. O. Soliman ◽  
T. K. Datta

A frequency domain spectral analysis of piping systems with flexible supports is presented for uniformly modulated nonstationary support excitations. The support points are idealized by spring-dashpot arrangements. The equations of motion of the resulting nonclassically damped, multipoint excitation system are written and solved in terms of the absolute displacements of the dynamic DOF. This facilitates a direct computation of the dynamic stresses induced at various cross sections of the pipe segments. The method of analysis provides a quasi-stationary response based on the assumption that the modulating function varies slowly with time; the exact response analysis in frequency domain for such systems with nonstationary support excitation is difficult to determine. Using the method of analysis presented, the response of a piping system is obtained for a set of important parametric variations related to the flexibility, damping, and excitation of the supports.


2019 ◽  
Vol 21 (6) ◽  
Author(s):  
Pascal Schulthess ◽  
Vivi Rottschäfer ◽  
James W. T. Yates ◽  
Piet H. van der Graaf

Abstract Thorough exploration of alternative dosing frequencies is often not performed in conventional pharmacometrics approaches. Quantitative systems pharmacology (QSP) can provide novel insights into optimal dosing regimen and drug behaviors which could add a new dimension to the design of novel treatments. However, methods for such an approach are currently lacking. Recently, we illustrated the utility of frequency-domain response analysis (FdRA), an analytical method used in control engineering, using several generic pharmacokinetic-pharmacodynamic case studies. While FdRA is not applicable to models harboring ever increasing variables such as those describing tumor growth, studying such models in the frequency domain provides valuable insight into optimal dosing frequencies. Through the analysis of three distinct tumor growth models (cell cycle-specific, metronomic, and acquired resistance), we demonstrate the application of a simulation-based analysis in the frequency domain to optimize cancer treatments. We study the response of tumor growth to dosing frequencies while simultaneously examining treatment safety, and found for all three models that above a certain dosing frequency, tumor size is insensitive to an increase in dosing frequency, e.g., for the cell cycle-specific model, one dose per 3 days, and an hourly dose yield the same reduction of tumor size to 3% of the initial size after 1 year of treatment. Additionally, we explore the effect of drug elimination rate changes on the tumor growth response. In summary, we show that the frequency-domain view of three models of tumor growth dynamics can help in optimizing drug dosing regimen to improve treatment success.


Sign in / Sign up

Export Citation Format

Share Document