Experimental study on the effect of fly ash content in cemented paste backfill on its anti-sulfate erosion

2020 ◽  
Vol 17 (12) ◽  
pp. 730-741 ◽  
Author(s):  
Boqiang Cui ◽  
Yin Liu ◽  
Guorui Feng ◽  
Jinwen Bai ◽  
Xianjie Du ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xinguo Zhang ◽  
Shichuan Zhang

Cemented paste backfill containing coal gangue and fly ash (CGFACPB) is an emerging backfill technique for coal mines that allows environmentally hazardous coal gangue and fly ash to be reused in the underground goaf. Meanwhile, CGFACPB can provide an efficient ground support and reduce the surface subsidence. Due to the difference of consolidation environment between the laboratory and the field, the mechanical properties of the cemented paste backfill vary significantly. In this paper, the core specimens were collected from an underground coal mine where the CGFACPB was used for coal mining, and the mechanical properties of the collected specimens were investigated. The cores were obtained from the underground coal mine, and then the standard cylinders or discs were prepared in laboratory. The uniaxial compressive strength (UCS), Young’s modulus, and Poisson’s ratio were determined by the compression tests, and the tensile strength was achieved by the Brazilian test. Then the internal friction angle and cohesion were calculated using the improved Mohr–Coulomb strength criterion. The results showed the development of UCS can be divided into four stages, and the final long-term stable value was about 5.1 MPa. The development of Young’s modulus had similar trend. Young’s modulus had a range from 550 MPa to 750 MPa and the mean value of 675 MPa. Poisson’s ratio gradually increased with the underground curing duration and eventually approached the stable value of 0.18. The failure type of compression samples was mainly single-sided shear failure. The development of tensile strength can be divided into two stages, and the stable value of the tensile strength was about 1.05 MPa. The development of cohesion can be divided into four stages, and the stable value was about 1.75 MPa. The stable value of the internal friction angle was about 25°. This study can provide significant references for not only the long-term stability evaluation of CGFACPB in the field but also the design of optimal recipe of the cemented paste backfill (CPB).


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4018
Author(s):  
Hangxing Ding ◽  
Shiyu Zhang

In order to reduce the CO2 emission and cost of binders used in cemented paste backfill (CPB) technology, new blended binders with a large amount of fly ash (FA) were fabricated. Different doses of quicklime and calcium sulfoaluminate cement (CṠA) were used as mineral accelerators to improve the early workability of CPB. The effects of CṠA and quicklime on flowability, compressive strength, pore structure, hydration heat, and hydration evolution were investigated experimentally. The results showed that the addition of quicklime and CṠA reduced the spread diameter of the fresh backfill and improved the mechanical performance of the hardened CPB. With increasing quicklime and CṠA, the cumulative hydration heat of the blended binder distinctly increased in the first 6 h. CṠA improved the initial hydration by increasing the reactivity, and quicklime increased the hydration rate by activating FA. The blended binder (15% quicklime + 10% CṠA) with the lowest CO2 emission and cost had potential application in filling technology.


2015 ◽  
Vol 789-790 ◽  
pp. 38-42
Author(s):  
Nuria S. Mohammed ◽  
Ahmed Baharuddin Abd Rahman ◽  
Nur Hafizah A. Khalid ◽  
Musaab Ahmed

Polymer resin grout can be used as bonding material for grouted sleeve connections This paper presents the experimental results on the effectiveness of fly ash as micro filler to the splitting tensile strength of polymer grout. In addition, the cement grout that is usually used as bonding material had been tested for comparison. Eleven proportions, of fly ash as the filler and polymer as binder, were tested with the binder to filler volume ratios of 1:1 and 1:1.5. The test results revealed that fly ash can be used as a micro-filler material to partially replace ordinary river sand in polymer resin grout. The splitting tensile strength of the polymer grout increases with the increase of fly ash contents. However, for higher level of fly ash of more than 22%, the splitting tensile strength deteriorated. For binder: filler ratio of 1:1, the optimum fly ash content of 22% gave the maximum splitting strength of 17.62 MPa, which can be considered acceptable for producing grout with high strength bonding material.


2019 ◽  
Vol 212 ◽  
pp. 283-294 ◽  
Author(s):  
Lang Liu ◽  
Pan Yang ◽  
Chongchong Qi ◽  
Bo Zhang ◽  
Lijie Guo ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Haijun Wang ◽  
Yun Duan

Fly ash (FA) showed low reactivity when being used to prepare the binder for cemented paste backfill (CPB). In the present work, wet-grinding treatment was used to increase the pozzolanic reactivity of FA and promote its sustainable utilization. The results showed that wet-grinding could be a suitable and efficient technology for FA pretreatment. Wet-grinding strongly modified the structure of FA by decreasing the crystalline phase content and the binding energy of Si 2p and Al 2p, contributing to the increase in pozzolanic reactivity of FA. The performance of CPB samples prepared by wet-ground FA was then optimized. This was reflected by the acceleration in the sample setting and increase in the strength development. The compressive strength of the CPB samples prepared by wet-ground FA for 120 min was increased by around 40% after curing for 28 d compared with the control samples.


Sign in / Sign up

Export Citation Format

Share Document