scholarly journals Differential transcription profiling of the phage LUZ19 infection process in different growth media

RNA Biology ◽  
2021 ◽  
pp. 1-13
Author(s):  
Ana Brandão ◽  
Diana P. Pires ◽  
Lucas Coppens ◽  
Marleen Voet ◽  
Rob Lavigne ◽  
...  
Author(s):  
Manfred E. Bayer

The first step in the infection of a bacterium by a virus consists of a collision between cell and bacteriophage. The presence of virus-specific receptors on the cell surface will trigger a number of events leading eventually to release of the phage nucleic acid. The execution of the various "steps" in the infection process varies from one virus-type to the other, depending on the anatomy of the virus. Small viruses like ØX 174 and MS2 adsorb directly with their capsid to the bacterial receptors, while other phages possess attachment organelles of varying complexity. In bacteriophages T3 (Fig. 1) and T7 the small conical processes of their heads point toward the adsorption site; a welldefined baseplate is attached to the head of P22; heads without baseplates are not infective.


2003 ◽  
Vol 8 (5-6) ◽  
pp. 211-215 ◽  
Author(s):  
L.T. Mischenko ◽  
◽  
T. Kiihne ◽  
I.A. Mischenko ◽  
A.L. Boyko ◽  
...  

2020 ◽  
Vol 99 (6) ◽  
pp. 226-231
Author(s):  
A.V. Permyakova ◽  
◽  
A.V. Sazhin ◽  
E.V. Melekhina ◽  
A.V. Gorelov ◽  
...  

The review presents the existing biological and mathematical models of the infection process caused by the Epstein–Barr virus. The existence of the Epstein–Barr virus in the host organism can be described by a model representing a cycle of six consecutive stages, each of them has its own independent variant of immune regulation. The phenomenon of virus excretion in biological fluids, in particular, in saliva, is modeled using differential equations. Usage of mathematical modeling allows us to supplement existing knowledge about the pathogenesis of the infectious process caused by the Epstein–Barr virus, as well as to determine threshold levels of virus isolation in non-sterile environments for the diagnosis of active forms of infection.


2019 ◽  
Vol 3 (2) ◽  
pp. 27
Author(s):  
Emma Savitri ◽  
Natalia Suseno ◽  
Tokok Adiarto

Many mass-transfer applications have used chitosan membrane in separation processes. This research applied crosslinked chitosan membrane to sterillize bacterial growth media. Chitosan membranes having 79 % DD were produced by casting and drying chitosan solution. The images of the membrane were characterized by SEM and other characterizations such as permeability, permselectivity and tensile strength were investigated. The flux increased with longer submersion period but the rejection decreased. Otherwise, the flux decreased and rejection increased in line with an increase in curing temperature. Tensile strength increased with the increase of submersion period and curing temperature. The optimum conditions of crosslinking process are 2 hours of submersion periods and curing temperature at 90 oC.  It gives flux 5.8930 L/jam.m2, rejection 97.47 % and tensile strength 49640 kN/m2


1986 ◽  
Vol 4 (1) ◽  
pp. 22-25 ◽  
Author(s):  
A.J. Laiche ◽  
V.E. Nash

Three woody landscape species, Rhododendron indica ‘President Clay’, Ligustrum sinense ‘variegata’, and Ilex crenata ‘compacta’, were grown in media prepared from fresh pine bark, pine bark with wood, and pine tree chips. Although media were variable in physical properties, all exhibited very high hydraulic conductivity and low water holding capacity. The capacity of these media materials to hold fertilizer elements was very low. Nitrogen, potassium, and phosphorus were rapidly removed by leaching while calciuum and magnesium were retained longer because of the low solubility of dolomitic limestone. Pine bark was the best growth media tested for all plant species. Pine bark with wood was less satisfactory than pine bark and growth was poorest in pine tree chips. More research is needed on the use of the organic amendments with greater amounts of wood before being widely used as organic components of growth media.


1999 ◽  
Author(s):  
Charles H. Wick ◽  
Patrick E. McCubbin

2000 ◽  
Vol 42 (9) ◽  
pp. 195-201 ◽  
Author(s):  
P. Andreasen ◽  
P. B. Mortensen ◽  
A. Stubsgaard ◽  
B. Langdahl

The stabilisation of a sludge-mineral soil mixture and a method to evaluate the state of stabilisation were investigated. The organic matter and nitrogen content are reduced up to 50% during a stabilisation process of three months under Danish climatic conditions. The stabilisation was shown to be an aerobic process limited by oxygen transport within the mixture. The degree of stabilisation was evaluated by oxygen consumption in a water suspension and the results showed that a stable product was achieved when oxygen consumption was stable and in the level of natural occurring aerobic soils (0.1 mgO2/(g DS*hr). The study thereby demonstrates that a stability of a growth media can be controlled by the oxygen consumption method tested.


Sign in / Sign up

Export Citation Format

Share Document