Effect of different modified growth media on postharvest pathogens

2018 ◽  
Vol 19 (3) ◽  
Keyword(s):  
2019 ◽  
Vol 3 (2) ◽  
pp. 27
Author(s):  
Emma Savitri ◽  
Natalia Suseno ◽  
Tokok Adiarto

Many mass-transfer applications have used chitosan membrane in separation processes. This research applied crosslinked chitosan membrane to sterillize bacterial growth media. Chitosan membranes having 79 % DD were produced by casting and drying chitosan solution. The images of the membrane were characterized by SEM and other characterizations such as permeability, permselectivity and tensile strength were investigated. The flux increased with longer submersion period but the rejection decreased. Otherwise, the flux decreased and rejection increased in line with an increase in curing temperature. Tensile strength increased with the increase of submersion period and curing temperature. The optimum conditions of crosslinking process are 2 hours of submersion periods and curing temperature at 90 oC.  It gives flux 5.8930 L/jam.m2, rejection 97.47 % and tensile strength 49640 kN/m2


1986 ◽  
Vol 4 (1) ◽  
pp. 22-25 ◽  
Author(s):  
A.J. Laiche ◽  
V.E. Nash

Three woody landscape species, Rhododendron indica ‘President Clay’, Ligustrum sinense ‘variegata’, and Ilex crenata ‘compacta’, were grown in media prepared from fresh pine bark, pine bark with wood, and pine tree chips. Although media were variable in physical properties, all exhibited very high hydraulic conductivity and low water holding capacity. The capacity of these media materials to hold fertilizer elements was very low. Nitrogen, potassium, and phosphorus were rapidly removed by leaching while calciuum and magnesium were retained longer because of the low solubility of dolomitic limestone. Pine bark was the best growth media tested for all plant species. Pine bark with wood was less satisfactory than pine bark and growth was poorest in pine tree chips. More research is needed on the use of the organic amendments with greater amounts of wood before being widely used as organic components of growth media.


1999 ◽  
Author(s):  
Charles H. Wick ◽  
Patrick E. McCubbin

2000 ◽  
Vol 42 (9) ◽  
pp. 195-201 ◽  
Author(s):  
P. Andreasen ◽  
P. B. Mortensen ◽  
A. Stubsgaard ◽  
B. Langdahl

The stabilisation of a sludge-mineral soil mixture and a method to evaluate the state of stabilisation were investigated. The organic matter and nitrogen content are reduced up to 50% during a stabilisation process of three months under Danish climatic conditions. The stabilisation was shown to be an aerobic process limited by oxygen transport within the mixture. The degree of stabilisation was evaluated by oxygen consumption in a water suspension and the results showed that a stable product was achieved when oxygen consumption was stable and in the level of natural occurring aerobic soils (0.1 mgO2/(g DS*hr). The study thereby demonstrates that a stability of a growth media can be controlled by the oxygen consumption method tested.


2009 ◽  
Vol 36 (11) ◽  
pp. 938 ◽  
Author(s):  
Nima Yazdanbakhsh ◽  
Joachim Fisahn

Plant organ phenotyping by non-invasive video imaging techniques provides a powerful tool to assess physiological traits and biomass production. We describe here a range of applications of a recently developed plant root monitoring platform (PlaRoM). PlaRoM consists of an imaging platform and a root extension profiling software application. This platform has been developed for multi parallel recordings of root growth phenotypes of up to 50 individual seedlings over several days, with high spatial and temporal resolution. PlaRoM can investigate root extension profiles of different genotypes in various growth conditions (e.g. light protocol, temperature, growth media). In particular, we present primary root growth kinetics that was collected over several days. Furthermore, addition of 0.01% sucrose to the growth medium provided sufficient carbohydrates to maintain reduced growth rates in extended nights. Further analysis of records obtained from the imaging platform revealed that lateral root development exhibits similar growth kinetics to the primary root, but that root hairs develop in a faster rate. The compatibility of PlaRoM with currently accessible software packages for studying root architecture will be discussed. We are aiming for a global application of our collected root images to analytical tools provided in remote locations.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Anmoldeep Randhawa ◽  
Nandita Pasari ◽  
Tulika Sinha ◽  
Mayank Gupta ◽  
Anju M. Nair ◽  
...  

Abstract Background Penicillium funiculosum NCIM1228 is a non-model filamentous fungus that produces high-quality secretome for lignocellulosic biomass saccharification. Despite having desirable traits to be an industrial workhorse, P. funiculosum has been underestimated due to a lack of reliable genetic engineering tools. Tolerance towards common fungal antibiotics had been one of the major hindrances towards development of reliable transformation tools against the non-model fungi. In this study, we sought to understand the mechanism of drug tolerance of P. funiculosum and the provision to counter it. We then attempted to identify a robust method of transformation for genome engineering of this fungus. Results Penicillium funiculosum showed a high degree of drug tolerance towards hygromycin, zeocin and nourseothricin, thereby hindering their use as selectable markers to obtain recombinant transformants. Transcriptome analysis suggested a high level expression of efflux pumps belonging to ABC and MFS family, especially when complex carbon was used in growth media. Antibiotic selection medium was optimized using a combination of efflux pump inhibitors and suitable carbon source to prevent drug tolerability. Protoplast-mediated and Agrobacterium-mediated transformation were attempted for identifying efficiencies of linear and circular DNA in performing genetic manipulation. After finding Ti-plasmid-based Agrobacterium-mediated transformation more suitable for P. funiculosum, we improvised the system to achieve random and homologous recombination-based gene integration and deletion, respectively. We found single-copy random integration of the T-DNA cassette and could achieve 60% efficiency in homologous recombination-based gene deletions. A faster, plasmid-free, and protoplast-based CRISPR/Cas9 gene-editing system was also developed for P. funiculosum. To show its utility in P. funiculosum, we deleted the gene coding for the most abundant cellulase Cellobiohydrolase I (CBH1) using a pair of sgRNA directed towards both ends of cbh1 open reading frame. Functional analysis of ∆cbh1 strain revealed its essentiality for the cellulolytic trait of P. funiculosum secretome. Conclusions In this study, we addressed drug tolerability of P. funiculosum and developed an optimized toolkit for its genome modification. Hence, we set the foundation for gene function analysis and further genetic improvements of P. funiculosum using both traditional and advanced methods.


Sign in / Sign up

Export Citation Format

Share Document