SINTESIS DAN MODIFIKASI STRUKTUR DAN PORI MEMBRAN KITOSAN TERCROSSLINK UNTUK STERILISASI MEDIA PERTUMBUHAN BAKTERI

2019 ◽  
Vol 3 (2) ◽  
pp. 27
Author(s):  
Emma Savitri ◽  
Natalia Suseno ◽  
Tokok Adiarto

Many mass-transfer applications have used chitosan membrane in separation processes. This research applied crosslinked chitosan membrane to sterillize bacterial growth media. Chitosan membranes having 79 % DD were produced by casting and drying chitosan solution. The images of the membrane were characterized by SEM and other characterizations such as permeability, permselectivity and tensile strength were investigated. The flux increased with longer submersion period but the rejection decreased. Otherwise, the flux decreased and rejection increased in line with an increase in curing temperature. Tensile strength increased with the increase of submersion period and curing temperature. The optimum conditions of crosslinking process are 2 hours of submersion periods and curing temperature at 90 oC.  It gives flux 5.8930 L/jam.m2, rejection 97.47 % and tensile strength 49640 kN/m2

2020 ◽  
Vol 35 (4-5) ◽  
pp. 289-300
Author(s):  
Aiping Shi ◽  
Ying Guan ◽  
Yongjun Zhang

A new emulsification-crosslinking method was developed for the preparation of chitosan microspheres. The new method uses an aqueous alkali–urea solution, instead of the commonly used acidic solvents, to dissolve chitosan. After emulsification, the water-in-oil droplets are solidified by heating, taking advantage of the unique in situ thermal gelling behavior of the alkaline chitosan solution, instead of by crosslinking with a usually toxic crosslinker. The size of the microspheres can be controlled by the concentration of chitosan solution, stirring speed, emulsifier concentration, and the curing temperature. The resulting microspheres are physically crosslinked, instead of chemically crosslinked, and they are ready to dissolve in dilute acetic acid. The resulting chitosan microspheres are non-toxic and can be degraded by lysozyme. Bovine serum albumin, a model protein, can be facilely loaded into the microspheres by adsorption, and then released from the microspheres.


Author(s):  
Fitria Renata Bella ◽  
Prihartini Widiyanti ◽  
Aminatun

Bacterial cellulose and chitosan have been widely developed for biomaterial applications, one of which is used as a dura mater artificial. In designing dura mater artificial, there are several criteria that must be met, one of which is mechanical that can be seen through tensile strength and elongation value. In previous study, the mechanical properties of biocomposite bacterial cellulose-chitosan still too rigid and did not meet the standard. This research was conducted to determine the effect of the addition of glycerol concentration to the physical and biological of bacterial cellulose-chitosan membrane. Bacterial cellulose membranes with the addition of glycerol concentration of 0%; 0,25%; 0,5% and 0,75% were dried with oven and immersed for 6 hours in 0.5% chitosan solution. Characterization was performed by functional group, morphology, tensile strength, swelling, degradation and cytotoxicity test. Based on the results, it can conclude that biocomposite bacterial cellulose-chitosan-glycerol showed suitable characteristics as a dura mater artificial.


2018 ◽  
Vol 9 (2) ◽  
pp. 67-73
Author(s):  
M Zainul Arifin

This research was conducted to determine the value of the highest compressive strength from the ratio of normal concrete to normal concrete plus additive types of Sika Cim with a composition variation of 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1 , 50% and 1.75% of the weight of cement besides that in this study also aims to find the highest tensile strength from the ratio of normal concrete to normal concrete in the mixture of sika cim composition at the highest compressive strength above and after that added fiber wire with a size diameter of 1 mm in length 100 mm with a ratio of 1% of material weight. The concrete mix plan was calculated using the ASTM method, the matrial composition of the normal concrete mixture as follows, 314 kg / m3 cement, 789 kg / m3 sand, 1125 kg / m3 gravel and 189 liters / m3 of water at 10 cm slump, then normal concrete added variations of the composition of sika cim 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.5%, 1.75% by weight of cement and fiber, the tests carried out were compressive strength of concrete and tensile strength of concrete, normal maintenance is soaked in fresh water for 28 days at 30oC. From the test results it was found that the normal concrete compressive strength at the age of 28 days was fc1 30 Mpa, the variation in the addition of the sika cim additive type mineral was achieved in composition 0.75% of the cement weight of fc1 40.2 Mpa 30C. Besides that the tensile strength test results were 28 days old with the addition of 1% fiber wire mineral to the weight of the material at a curing temperature of 30oC of 7.5%.


2018 ◽  
Vol 21 (2) ◽  
pp. 80-84 ◽  
Author(s):  
Retno Ariadi Lusiana ◽  
Vivi Dia Ahmad Sangkota ◽  
Sri Juari Santosa

Evaluation character of chitosan membrane-succinate / poly vinyl alcohol-poly ethylene glycol (PVA-PEG) were prepared in acetic acid solvent through a phase inversion method has been performed. The study began with the preparation of crosslinked chitosan compounds with succinic acid, followed by preparation into membrane by combining PVA-PEG. Character analysis of the resulting material using FTIR, EDX, TGA, water absorption test, tensile strength, membrane hydrophilicity. The ability of membrane permeation was tested against creatinine. The results showed that the succinate had reacted with chitosan. Chitosan modification through cross link and polymer alloys increases tensile strength and membrane strain of 1.7-2.5 x of pure chitosan membrane. In addition, the modified membrane also has higher water absorption and hydrophilicity values than the unmodified membrane, and this implies the ability of membrane-induced creatinine permeation. Permeable permeation values were 13.8% in chitosan, 24.84% on chitosan-succinate and 25% in chitosan-succinate / PVA-PEG. Chitosan-succinate membranes have the ability to use more than 4x repeated use.


2018 ◽  
Vol 156 ◽  
pp. 08009 ◽  
Author(s):  
Titik Istirokhatun ◽  
Ulva Yuni ◽  
Pertiwi Andarani ◽  
Heru Susanto

Biofouling, due to the existence of bacteria in water, becomes one of the barriers in cellulose acetate (CA) membrane applications. Although chitosan has been incorporated into CA membranes, its antimicrobial activity has not been improved significantly yet. In this study, cellulose acetate-chitosan membranes were prepared by modification using ZnO and Al2O3 nanoparticles during phase separation method. The membranes were then characterized in term of water permeability, and surface morphology. The anti-bacteria property was examined by using gram-negative bacteria. Modification of cellulose acetate-chitosan membranes with ZnO and Al2O3 nanoparticles have not shown optimal results where no clear zones around the membrane are visible.


2017 ◽  
Vol 75 (9) ◽  
pp. 2034-2046 ◽  
Author(s):  
Adnan Khan ◽  
Samina Begum ◽  
Nauman Ali ◽  
Sabir Khan ◽  
Sajjad Hussain ◽  
...  

A chitosan magnetic membrane was prepared in order to confer magnetic properties to the membrane, which could be used for the removal of cations from aqueous solution. The crosslinked magnetic membrane was compared with pristine chitosan membrane in term of stability, morphology and cation adsorption capacity. The fabricated magnetic materials are thermally stable as shown by thermogravimetric curves. The membrane containing nickel magnetic particles (CHNiF-G) shows high thermal stability compared to the other membranes. The Fourier transform infrared spectroscopy showed successful preparation of chitosan magnetic membrane. Scanning electron microscopy micrographs showed the rough surface of the membrane with increased porosity. The prepared chitosan membranes were applied to cations of copper, nickel and lead in dilute aqueous solution. The chitosan membrane showed the following adsorption order for metallic cations: Cu2+ > Ni2+ > Pb2+, while CHNiF-G showed higher capacity, 3.51 mmol g−1 for copper, reflecting the improvement in adsorption capacity, since the amount of copper on pristine chitosan gave 1.40 mmol g−1. The time required for adsorption to reach to the equilibrium was 6 h for the selected cations using different chitosan membranes. The kinetic study showed that adsorption followed pseudo-second order kinetics. The most commonly used isotherm models, Freundlich, Langmuir and Temkin, were applied to experimental data using linear regression technique. However, The Temkin model fits better to experimental data.


2018 ◽  
Vol 16 (2) ◽  
pp. 144 ◽  
Author(s):  
Retno Ariadi Lusiana ◽  
Dwi Siswanta ◽  
Mudasir Mudasir

Preparation of membrane using crosslinking reaction between chitosan and citric acid showed that functional group modification increased the number of active carrier groups which lead to better transport capacity of the membrane. In addition, the substitution of the carboxyl group increased creatinine permeation of chitosan membrane. The transport capacity of citric acid crosslinked chitosan membrane for creatinine was found to be 6.3 mg/L. The presence of cyanocobalamin slightly hindered the transport of creatinine although compounds did not able to pass through citric acid crosslinked chitosan/poly(vinyl alcohol) blend membrane, as compounds no found in the acceptor phase.


2010 ◽  
Vol 7 (3) ◽  
pp. 284-287
Author(s):  
Ani Mulyasuryani ◽  
Qonitah Fardiyah ◽  
Rizki Sugiri

The iodate-selective electrode based on the principle of precipitation reaction could be made by coating the platinum wire with silver iodate (AgIO3). In this research was carried out optimization the iodate-selective electrode using chitosan membrane as an AgIO3 support. The AgIO3 were added in the 2 mL 1% chitosan solution, is 0.5 to 2.5 % (w/v). The thickness of the membrane used is 6 to 12 µm. The electrode cell potential is measured against Ag/AgCl electrode as a reference electrode. The optimum electrode performance was at 2.0 % of AgIO3 with thickness a membrane of 10 µm. The iodate-selective electrode has a Nernstian factor is 52.96 mV/decade and a response time of 10 seconds. The concentration range was determined from 10-3 M to 10-1 M and the detection limit is 1.12 x 10-5 M.   Keywords:  Ion Selective Electrode, Iodate, Chitosan Membrane


Sign in / Sign up

Export Citation Format

Share Document