scholarly journals Hierarchical alignment of 3D print with tool path based on microstructure

Author(s):  
Yifan Yang ◽  
Yutaka Ohtake ◽  
Tatsuya Yatagawa ◽  
Hiromasa Suzuki
Keyword(s):  
2019 ◽  
Vol 11 (10) ◽  
pp. 168781401988377
Author(s):  
Yu He ◽  
Zhongming Zhou ◽  
Ping Zou ◽  
Xiaogang Gao ◽  
Kornel F Ehmann

With excellent properties, high-temperature superalloys have become the main application materials for aircraft engines, gas turbines, and many other devices. However, superalloys are typically difficult to machine, especially for the thread cutting. In this article, an ultrasonic vibration–assisted turning system is proposed for thread cutting operations in superalloys. A theoretical analysis of ultrasonic vibration–assisted thread cutting is carried out. An ultrasonic vibration–assisted system was integrated into a standard lathe to demonstrate thread turning in Inconel 718 superalloy. The influence of ultrasonic vibration–assisted machining on workpiece surface quality, chip shape, and tool wear was analyzed. The relationship between machining parameters and ultrasonic vibration–assisted processing performance was also explored. By analyzing the motion relationship between tool path and workpiece surface, the reasons for improved workpiece surface quality by ultrasonic vibration–assisted machining were explained.


Open Ceramics ◽  
2021 ◽  
pp. 100089
Author(s):  
Oscar Santoliquido ◽  
Francesco Camerota ◽  
Alice Rosa ◽  
Alberto Ortona

Author(s):  
Mandeep Dhanda ◽  
Aman Kukreja ◽  
SS Pande

This paper reports a novel method to generate adaptive spiral tool path for the CNC machining of complex sculptured surface represented in the form of cloud of points without the need for surface fitting. The algorithm initially uses uniform 2 D circular mesh-grid to compute the cutter location (CL) points by applying the tool inverse offset method (IOM). These CL points are refined adaptively till the surface form errors converge below the prescribed tolerance limits in both circumferential and radial directions. They are further refined to eliminate the redundancy in machining and generate optimum region wise tool path to minimize the tool lifts. The NC part programs generated by our algorithm were widely tested for different case studies using the commercial CNC simulator as well as by the actual machining trial. Finally, a comparative study was done between our developed system and the commercial CAM software. The results showed that our system is more efficient and robust in terms of the obtained surface quality, productivity, and memory requirement.


Author(s):  
Hongwei Liu ◽  
Rui Yang ◽  
Pingjiang Wang ◽  
Jihong Chen ◽  
Hua Xiang

The objective of this research is to develop a novel correction mechanism to reduce the fluctuation range of tools in numerical control (NC) machining. Error compensation is an effective method to improve the machining accuracy of a machine tool. If the difference between two adjacent compensation data is too large, the fluctuation range of the tool will increase, which will seriously affect the surface quality of the machined parts in mechanical machining. The methodology used in compensation data processing is a simplex method of linear programming. This method reduces the fluctuation range of the tool and optimizes the tool path. The important aspect of software error compensation is to modify the initial compensation data by using an iterative method, and then the corrected tool path data are converted into actual compensated NC codes by using a postprocessor, which is implemented on the compensation module to ensure a smooth running path of the tool. The generated, calibrated, and amended NC codes were immediately fed to the machine tool controller. This technique was verified by using repeated measurements. The results of the experiments demonstrate efficient compensation and significant improvement in the machining accuracy of the NC machine tool.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2518
Author(s):  
Nunzio Cennamo ◽  
Lorena Saitta ◽  
Claudio Tosto ◽  
Francesco Arcadio ◽  
Luigi Zeni ◽  
...  

In this work, a novel approach to realize a plasmonic sensor is presented. The proposed optical sensor device is designed, manufactured, and experimentally tested. Two photo-curable resins are used to 3D print a surface plasmon resonance (SPR) sensor. Both numerical and experimental analyses are presented in the paper. The numerical and experimental results confirm that the 3D printed SPR sensor presents performances, in term of figure of merit (FOM), very similar to other SPR sensors made using plastic optical fibers (POFs). For the 3D printed sensor, the measured FOM is 13.6 versus 13.4 for the SPR-POF configuration. The cost analysis shows that the 3D printed SPR sensor can be manufactured at low cost (∼15 €) that is competitive with traditional sensors. The approach presented here allows to realize an innovative SPR sensor showing low-cost, 3D-printing manufacturing free design and the feasibility to be integrated with other optical devices on the same plastic planar support, thus opening undisclosed future for the optical sensor systems.


2021 ◽  
Vol 28 (6) ◽  
Author(s):  
Maryna Gorlachova ◽  
Boris Mahltig

AbstractThe actual paper is related to adhesive properties of 3D objects printed on cotton textile fabrics. For practical applications of 3D prints in the textile sector, the adhesion of the printed object on the textile substrate is an important issue. In the current study, two different types of polymers are printed on cotton – polylactide acid (PLA) and polyamide 6.6 (Nylon). Altogether six cotton fabrics differing in structure, weight and thickness are evaluated. Also, the effect of washing and enzymatic desizing is investigated. For printing parameters, best results are gained for elevated process temperatures, intermediate printing speed and low Z-distance between printing head and substrate. Also, a textile treatment by washing and desizing can improve the adhesion of an afterwards applied 3D print. The presented results are quite useful for future developments of 3D printing applications on textile substrates, e.g. to implement new decorative features or protective functions.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 88
Author(s):  
Yupeng Xin ◽  
Yuanheng Li ◽  
Wenhui Li ◽  
Gangfeng Wang

Cavities are typical features in aeronautical structural parts and molds. For high-speed milling of multi-cavity parts, a reasonable processing sequence planning can significantly affect the machining accuracy and efficiency. This paper proposes an improved continuous peripheral milling method for multi-cavity based on ant colony optimization algorithm (ACO). Firstly, by analyzing the mathematical model of cavity corner milling process, the geometric center of the corner is selected as the initial tool feed position. Subsequently, the tool path is globally optimized through ant colony dissemination and pheromone perception for path solution of multi-cavity milling. With the advantages of ant colony parallel search and pheromone positive feedback, the searching efficiency of the global shortest processing path is effectively improved. Finally, the milling programming of an aeronautical structural part is taken as a sample to verify the effectiveness of the proposed methodology. Compared with zigzag milling and genetic algorithm (GA)-based peripheral milling modes in the computer aided manufacturing (CAM) software, the results show that the ACO-based methodology can shorten the milling time of a sample part by more than 13%.


Sign in / Sign up

Export Citation Format

Share Document