scholarly journals Masked primes evoke partial responses

2018 ◽  
Vol 71 (6) ◽  
pp. 1431-1439 ◽  
Author(s):  
Jennifer McBride ◽  
Petroc Sumner ◽  
Masud Husain

Backward-masked primes presented outside conscious awareness can affect responses to subsequently presented target stimuli. Differences in response times have been used to infer a pattern of sub-threshold activation and subsequent inhibition of motor plans associated with the primes. However, it is unclear whether competition between alternative responses is fully resolved in the brain or whether activated responses can begin being executed before the final decision to act has been made. Here, we investigate the dynamics of responses evoked by masked primes using a continuous measure – voltage change in force-sensing resistors simultaneously in both hands. Masked primes produced the predicted pattern of motor activation and subsequent inhibition of the primed response. There is no evidence that the effects of masked primes interact with spatial compatibility (e.g., Simon) effects, suggesting separate mechanisms underpinning these effects. Moreover, masked primes evoked partial motor decisions – measurable at the effectors as small amounts of erroneous response – which were usually rapidly corrected. Together, these errors and fast corrections question the ‘sub-threshold’ nature of responses evoked by masked primes and provide important constraints on models of decision-making.

2020 ◽  
Author(s):  
Thomas L. Botch ◽  
Alina Spiegel ◽  
Catherine Ricciardi ◽  
Caroline E. Robertson

AbstractBumetanide has received much interest as a potential pharmacological modulator of the putative imbalance in excitatory/inhibitory (E/I) signaling that is thought to characterize autism spectrum conditions. Yet, currently, no studies of bumetanide efficacy have used an outcome measure that is modeled to depend on E/I balance in the brain. In this manuscript, we present the first causal study of the effect of bumetanide on an objective marker of E/I balance in the brain, binocular rivalry, which we have previously shown to be sensitive to pharmacological manipulation of GABA. Using a within-subjects placebo-control crossover design study, we show that, contrary to expectation, acute administration of bumetanide does not alter binocular rivalry dynamics in neurotypical adult individuals. Neither changes in response times nor response criteria can account for these results. These results raise important questions about the efficacy of acute bumetanide administration for altering E/I balance in the human brain, and highlight the importance of studies using objective markers of the underlying neural processes that drugs hope to target.


2019 ◽  
Author(s):  
Dirk van Moorselaar ◽  
Heleen A. Slagter

AbstractIt is well known that attention can facilitate performance by top-down biasing processing of task-relevant information in advance. Recent findings from behavioral studies suggest that distractor inhibition is not under similar direct control, but strongly dependent on expectations derived from previous experience. Yet, how expectations about distracting information influence distractor inhibition at the neural level remains unclear. The current study addressed this outstanding question in three experiments in which search displays with repeating distractor or target locations across trials allowed observers to learn which location to selectively suppress or boost. Behavioral findings demonstrated that both distractor and target location learning resulted in more efficient search, as indexed by faster response times. Crucially, benefits of distractor learning were observed without target location foreknowledge, unaffected by the number of possible target locations, and could not be explained by priming alone. To determine how distractor location expectations facilitated performance, we applied a spatial encoding model to EEG data to reconstruct activity in neural populations tuned to the distractor or target location. Target location learning increased neural tuning to the target location in advance, indicative of preparatory biasing. This sensitivity increased after target presentation. By contrast, distractor expectations did not change preparatory spatial tuning. Instead, distractor expectations reduced distractor-specific processing, as reflected in the disappearance of the Pd ERP component, a neural marker of distractor inhibition, and decreased decoding accuracy. These findings suggest that the brain may no longer process expected distractors as distractors, once it has learned they can safely be ignored.Significance statementWe constantly try hard to ignore conspicuous events that distract us from our current goals. Surprisingly, and in contrast to dominant attention theories, ignoring distracting, but irrelevant events does not seem to be as flexible as is focusing our attention on those same aspects. Instead, distractor suppression appears to strongly rely on learned, context-dependent expectations. Here, we investigated how learning about upcoming distractors changes distractor processing and directly contrasted the underlying neural dynamics to target learning. We show that while target learning enhanced anticipatory sensory tuning, distractor learning only modulated reactive suppressive processing. These results suggest that expected distractors may no longer be considered distractors by the brain once it has learned that they can safely be ignored.


2003 ◽  
Vol 15 (6) ◽  
pp. 862-872 ◽  
Author(s):  
Umberto Castiello ◽  
Dean Lusher ◽  
Carol Burton ◽  
Peter Disler

The aims of the present study were to investigate whether the processing of an object shadow occurs implicitly, that is without conscious awareness, and where physically within the human brain shadows are processed. Here we present neurological evidence, obtained from studies of brain-injured patients with visual neglect, that shadows are implicitly processed and that this processing may take place within the temporal lobe. Neglect patients with lesions that do not involve the right temporal lobe were still able to process shadows to optimize object shape perception. In contrast, shadow processing was not found to be as efficient in neglect patients with lesions that involve the right temporal lobe.


1998 ◽  
Vol 18 (9) ◽  
pp. 960-967 ◽  
Author(s):  
Suguru Inao ◽  
Masanori Tadokoro ◽  
Masanari Nishino ◽  
Nobuhiko Mizutani ◽  
Koichi Terada ◽  
...  

Little is known about how ischemia affects hemodynamic responses to neural activation in the brain. We compare the effects of a motor activation task and a cerebral vasodilating agent, acetazolamide (ACZ), on regional cerebral blood flow (rCBF) in primary sensorimotor cortex (PSM) in six patients with major cerebral artery steno-occlusive lesions without paresis of the upper extremities. Quantitative rCBF was measured in all patients using H215 O autoradiographic method and positron emission tomography. The CBF was determined at rest, during a bimanual motor activation task, and 10 minutes after ACZ administration. With bimanual motor activation, rCBF increased significantly in both PSM compared with at rest ( P < 0.01 on lesion side, and P < 0.02 on contralateral side). However, rCBF did not increase after ACZ injection in the PSM on the lesion side, whereas rCBF increased significantly in the contralateral PSM after ACZ injection compared with the level at rest. This result suggests that despite a decreased hemodynamic reserve, there is a nearly normal flow response to neural activation, indicating that the mechanism of vasodilation responsible for perfusion change is different for acetazolamide and neural activation. The relations among neural activation, hemodynamic status, and cerebral metabolism in the ischemic stroke patients are discussed.


2020 ◽  
Author(s):  
Max Michael Owens ◽  
Nicholas Allgaier ◽  
Sage Hahn ◽  
Dekang Yuan ◽  
Matthew Albaugh ◽  
...  

Attention deficit/hyperactivity disorder is associated with numerous neurocognitive deficits including poor working memory and difficulty inhibiting undesirable behaviors that cause academic and behavioral problems in children. Prior work has attempted to determine how these differences are instantiated in the structure and function of the brain, but much of that work has been done in small samples, focused on older adolescents or adults, and used statistical approaches that were not robust to model overfitting. The current study used cross-validated elastic net regression to predict a continuous measure of ADHD symptomatology using brain morphometry and activation during tasks of working memory, inhibitory control, and reward processing, with separate models for each MRI measure. The best model using activation during the working memory task to predict ADHD symptomatology had an out-of-sample R2 = 2% and was robust to residualizing the effects of age, sex, race, parental income and education, handedness, pubertal status, and internalizing symptoms from ADHD symptomatology. This model used reduced activation in task positive regions and reduced deactivation in task negative regions to predict ADHD symptomatology. The best model with morphometry alone predicted ADHD symptomatology with an R2 = 1% but this effect dissipated when including covariates. The inhibitory control and reward tasks did not yield generalizable models. In summary, these analyses show, with a large and well-characterized sample, that the brain correlates of ADHD symptomatology are modest in effect size and captured best by brain morphometry and activation during a working memory task.


Author(s):  
Peggy Mason

The primary regions and principal functions of the central nervous system are introduced through the story of Jean-Dominique Bauby who became locked in after suffering a brainstem stroke. Bauby blinked out his story of locked-in syndrome one letter at a time. The primary deficit of locked-in syndrome is in voluntary movement because pathways from the brain to motoneurons in the brainstem and spinal cord are interrupted. Perception is also disturbed as pathways responsible for transforming sensory stimuli into conscious awareness are interrupted as they ascend through the brainstem into the forebrain. Homeostasis, through which the brain keeps the body alive, is also adversely affected in locked-in syndrome because it depends on the brain, spinal cord and autonomic nervous system. Abstract functions such as memory, language, and emotion depend fully on the forebrain and are intact in locked-in syndrome, as clearly evidenced by Bauby’s eloquent words.


2019 ◽  
Vol 86 (4) ◽  
pp. 347-358 ◽  
Author(s):  
James L. Bernat

Death can be defined as the permanent cessation of the organism as a whole. Although the organism as a whole is a century-old concept, it remains better intuited than analyzed. Recent concepts in theoretical biology including hierarchies of organization, emergent functions, and mereology have informed the idea that the organism as a whole is the organism’s critical emergent functions. Because the brain conducts the critical emergent functions including conscious awareness and control of respiration and circulation, the cessation of brain functions is death of the organism. A newer concept, the brain as a whole, may offer a superior criterion of death to the whole-brain criterion, because it more closely matches accepted clinical brain death tests and confirms the cessation of the organism’s emergent functions. Although the concepts of organism as a whole and brain as a whole remain vague and in need of rigorous biophilosophical analysis, their future precision will be restricted by the categorical limitations intrinsic to theoretical biological models.


2021 ◽  
Author(s):  
Sriram Narayanan ◽  
Aalok Varma ◽  
Vatsala Thirumalai

AbstractThe brain uses internal models to estimate future states of the environment based on current inputs and to predict consequences of planned actions. Neural mechanisms that underlie the acquisition and use of these predictive models are poorly understood. Using a novel experimental paradigm, we show clear evidence for predictive processing in the larval zebrafish brain. We find that when presented with repetitive optic flow stimuli, larval zebrafish modulate their optomotor response by quickly acquiring internal representations of the optic flow pattern. Distinct subcircuits in the cerebellum are involved in the predictive representation of stimulus timing and in using them for motor planning. Evidence for such predictive internal representations appears quickly within two trials, lasts over minute timescales even after optic flow is stopped and quickly adapts to changes in the pattern. These results point to an entrainment-based mechanism that allows the cerebellum to rapidly generate predictive neural signals ultimately leading to faster response times.


2019 ◽  
Vol 104 (2) ◽  
pp. 157-161 ◽  
Author(s):  
Jacoba Alida van de Kreeke ◽  
Hoang-Ton Nguyen ◽  
Elles Konijnenberg ◽  
Jori Tomassen ◽  
Anouk den Braber ◽  
...  

Background/aimsAs a protrusion from the brain, the retina might reflect the status of the brain. Previous studies showed a decrease in vessel density and foveal avascular zone (FAZ) enlargement on optical coherence tomography angiography (OCTA) in individuals suffering from Alzheimer’s disease (AD). This study aims to assess whether such changes are already present in preclinical stages of AD, in a population of monozygotic (MZ) twins.Methods124 cognitively healthy individuals (MZ twins, ages 60–93 years) underwent [18F]flutemetamol amyloid positron emission tomography (PET) scanning and OCTA. PET scans were visually rated for cortical amyloid-beta (Aβ) positivity. Parametric global cortical non-displaceable binding potential (BPND) was used as a continuous measure for Aβ aggregation. FAZ size and vessel densities for the inner and outer ring of the macular ETDRS grid and in a 3–6 mm ring around the optic nerve head (ONH) were measured.OCTA measures were associated with visual Aβ score,BPNDand amyloid load estimated by twin concordance on visual Aβ score. Twin correlations were estimated as a measure of maximum heritability of OCTA measures.Results13 of 124 participants were Aβ+. Aβ+ individuals had significantly higher vessel density than Aβ– individuals in all regions but did not differ in FAZ size. Twin analyses showed a positive association between and vessel densities in all regions.BPNDtended to be associated with higher vessel density in the inner ring. Twin correlations were moderate/high for all OCTA parameters except vessel density around the ONH, which correlated weakly.ConclusionRetinal vessel density was higher in individuals with preclinical AD.


2005 ◽  
Vol 17 (8) ◽  
pp. 1341-1352 ◽  
Author(s):  
Joseph B. Hopfinger ◽  
Anthony J. Ries

Recent studies have generated debate regarding whether reflexive attention mechanisms are triggered in a purely automatic stimulus-driven manner. Behavioral studies have found that a nonpredictive “cue” stimulus will speed manual responses to subsequent targets at the same location, but only if that cue is congruent with actively maintained top-down settings for target detection. When a cue is incongruent with top-down settings, response times are unaffected, and this has been taken as evidence that reflexive attention mechanisms were never engaged in those conditions. However, manual response times may mask effects on earlier stages of processing. Here, we used event-related potentials to investigate the interaction of bottom-up sensory-driven mechanisms and top-down control settings at multiple stages of processing in the brain. Our results dissociate sensory-driven mechanisms that automatically bias early stages of visual processing from later mechanisms that are contingent on top-down control. An early enhancement of target processing in the extrastriate visual cortex (i.e., the P1 component) was triggered by the appearance of a unique bright cue, regardless of top-down settings. The enhancement of visual processing was prolonged, however, when the cue was congruent with top-down settings. Later processing in posterior temporal-parietal regions (i.e., the ipsilateral invalid negativity) was triggered automatically when the cue consisted of the abrupt appearance of a single new object. However, in cases where more than a single object appeared during the cue display, this stage of processing was contingent on top-down control. These findings provide evidence that visual information processing is biased at multiple levels in the brain, and the results distinguish automatically triggered sensory-driven mechanisms from those that are contingent on top-down control settings.


Sign in / Sign up

Export Citation Format

Share Document