scholarly journals Multimethod Investigation of the Neurobiological Basis of ADHD Symptomatology in Children Aged 9-10: Baseline Data from the ABCD Study

2020 ◽  
Author(s):  
Max Michael Owens ◽  
Nicholas Allgaier ◽  
Sage Hahn ◽  
Dekang Yuan ◽  
Matthew Albaugh ◽  
...  

Attention deficit/hyperactivity disorder is associated with numerous neurocognitive deficits including poor working memory and difficulty inhibiting undesirable behaviors that cause academic and behavioral problems in children. Prior work has attempted to determine how these differences are instantiated in the structure and function of the brain, but much of that work has been done in small samples, focused on older adolescents or adults, and used statistical approaches that were not robust to model overfitting. The current study used cross-validated elastic net regression to predict a continuous measure of ADHD symptomatology using brain morphometry and activation during tasks of working memory, inhibitory control, and reward processing, with separate models for each MRI measure. The best model using activation during the working memory task to predict ADHD symptomatology had an out-of-sample R2 = 2% and was robust to residualizing the effects of age, sex, race, parental income and education, handedness, pubertal status, and internalizing symptoms from ADHD symptomatology. This model used reduced activation in task positive regions and reduced deactivation in task negative regions to predict ADHD symptomatology. The best model with morphometry alone predicted ADHD symptomatology with an R2 = 1% but this effect dissipated when including covariates. The inhibitory control and reward tasks did not yield generalizable models. In summary, these analyses show, with a large and well-characterized sample, that the brain correlates of ADHD symptomatology are modest in effect size and captured best by brain morphometry and activation during a working memory task.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Max M. Owens ◽  
Nicholas Allgaier ◽  
Sage Hahn ◽  
DeKang Yuan ◽  
Matthew Albaugh ◽  
...  

AbstractAttention deficit/hyperactivity disorder is associated with numerous neurocognitive deficits, including poor working memory and difficulty inhibiting undesirable behaviors that cause academic and behavioral problems in children. Prior work has attempted to determine how these differences are instantiated in the structure and function of the brain, but much of that work has been done in small samples, focused on older adolescents or adults, and used statistical approaches that were not robust to model overfitting. The current study used cross-validated elastic net regression to predict a continuous measure of ADHD symptomatology using brain morphometry and activation during tasks of working memory, inhibitory control, and reward processing, with separate models for each MRI measure. The best model using activation during the working memory task to predict ADHD symptomatology had an out-of-sample R2 = 2% and was robust to residualizing the effects of age, sex, race, parental income and education, handedness, pubertal status, and internalizing symptoms from ADHD symptomatology. This model used reduced activation in task positive regions and reduced deactivation in task negative regions to predict ADHD symptomatology. The best model with morphometry alone predicted ADHD symptomatology with an R2 = 1% but this effect dissipated when including covariates. The inhibitory control and reward tasks did not yield generalizable models. In summary, these analyses show, with a large and well-characterized sample, that the brain correlates of ADHD symptomatology are modest in effect size and captured best by brain morphometry and activation during a working memory task.


2004 ◽  
Vol 29 (6) ◽  
pp. 1203-1214 ◽  
Author(s):  
R A E Honey ◽  
G D Honey ◽  
C O'Loughlin ◽  
S R Sharar ◽  
D Kumaran ◽  
...  

2021 ◽  
Author(s):  
Mina Kwon ◽  
Hyeonjin Kim ◽  
Jaeyeong Yang ◽  
Jihyun Hur ◽  
Tae-Ho Lee ◽  
...  

AbstractWhile the negative impacts of caffeinated soda on children’s physical health have been well documented, it remains unexplored if habitual caffeinated soda intake is associated with intellectual capacities in children. Here, we investigated the behavioral and neural correlates of daily consumption of caffeinated soda on neurocognitive functions including working memory, impulsivity, and reward processing. We rigorously tested the link between caffeinated soda intake and the neurocognitive functions by applying machine learning and hierarchical linear regression to a large dataset from the Adolescent Brain Cognitive Development (ABCD) Study (N=3,966; age=9-10 years). The results showed that daily consumption of caffeinated soda in children was associated with impaired working memory and higher impulsivity, and increased amygdala activation during the emotional working memory task. The machine learning results also showed hypoactivity in the nucleus accumbens and the posterior cingulate cortex during reward processing. These results findings have significant implications for public health recommendations.Statement of RelevanceIs caffeinated soda bad for children’s brain development? If so, which specific intellectual capacity is affected? It is a question that many parents and caregivers are asking but surprisingly there is no clear guideline. Caffeinated soda is the most preferred route of caffeine intake in childhood and known to have physical side effects on children, but the link between habitual drinking of caffeinated soda in children and intellectual capacities remains largely unknown. Here, by applying machine learning and hierarchical regression approaches to a large dataset, we demonstrate that daily intake of caffeinated soda is associated with neurocognitive deficits including impaired working memory and higher impulsivity. These results have significant implications for public health recommendations.


2021 ◽  
Author(s):  
Paul Gomez

In this research we explore in detail how a phenomenon called sustained persistent activity is achieved by circuits of interconnected neurons. Persistent activity is a phenomenon that has been extensively studied (Papoutsi et al. 2013; Kaminski et. al. 2017; McCormick et al. 2003; Rahman, and Berger, 2011). Persistent activity consists in neuron circuits whose spiking activity remains even after the initial stimuli are removed. Persistent activity has been found in the prefrontal cortex (PFC) and has been correlated to working memory and decision making (Clayton E. Curtis and Daeyeol Lee, 2010). We go beyond the explanation of how persistent activity happens and show how arrangements of those basic circuits encode and store data and are used to perform more elaborated tasks and computations. The purpose of the model we propose here is to describe the minimum number of neurons and their interconnections required to explain persistent activity and how this phenomenon is actually a fast storage mechanism required for implementing working memory, task processing and decision making.


Author(s):  
Joseph Cerasuolo ◽  
Anthony Izzo

Summary Acute hyperglycemia has been shown to cause cognitive impairments in animal models. There is growing appreciation of the numerous effects of hyperglycemia on neuronal function as well as blood–brain barrier function. In humans, hypoglycemia is well known to cause cognitive deficits acutely, but hyperglycemia has been less well studied. We present a case of selective neurocognitive deficits in the setting of acute hyperglycemia. A 60-year-old man was admitted to the hospital for an episode of acute hyperglycemia in the setting of newly diagnosed diabetes mellitus precipitated by steroid use. He was managed with insulin therapy and discharged home, and later, presented with complaints of memory impairment. Deficits included impairment in his declarative and working memory, to the point of significant impairment in his overall functioning. The patient had no structural lesions on MRI imaging of the brain or other systemic illnesses to explain his specific deficits. We suggest that his acute hyperglycemia may have caused neurological injury, and may be responsible for our patient’s memory complaints. Learning points: Acute hyperglycemia has been associated with poor outcomes in several different central nervous system injuries including cerebrovascular accident and hypoxic injury. Hyperglycemia is responsible for accumulation of reactive oxygen species in the brain, resulting in advanced glycosylated end products and a proinflammatory response that may lead to cellular injury. Further research is needed to define the impact of both acute and chronic hyperglycemia on cognitive impairment and memory.


2021 ◽  
Author(s):  
Mateusz Woźniak ◽  
Timo Torsten Schmidt ◽  
Yuan-hao Wu ◽  
Felix Blankenburg ◽  
Jakob Hohwy

AbstractThe question how the brain distinguishes between information about oneself and the rest of the world is of fundamental interest to both philosophy and neuroscience. This question can be approached empirically by investigating how associating stimuli with oneself leads to differences in neurocognitive processing. However, little is known about the brain network involved in forming such self-associations for, specifically, bodily stimuli. In this fMRI study, we sought to distinguish the neural substrates of representing a full-body movement as one’s movement and as someone else’s movement. Participants performed a delayed match-to-sample working memory task where a retained full-body movement (displayed using point-light walkers) was arbitrarily labelled as one’s own movement or as performed by someone else. By using arbitrary associations we aimed to address a limitation of previous studies, namely that our own movements are more familiar to us than movements of other people. A searchlight multivariate decoding analysis was used to test where information about types of movement and about self-association was coded. Movement specific activation patterns was found in a network of regions also involved in perceptual processing of movement stimuli, however not in early sensory regions. Information about whether a memorized movement was associated with the self or with another person was found to be coded by activity in the left middle frontal gyrus (MFG), left inferior frontal gyrus (IFG), bilateral supplementary motor area, and (at reduced threshold) in the left temporoparietal junction (TPJ). These areas are frequently reported as involved in action understanding (IFG, MFG) and domain-general self/other distinction (TPJ). Finally, in univariate analysis we found that selecting a self-associated movement for retention was related to increased activity in the ventral medial prefrontal cortex.


NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S144
Author(s):  
K Stingl ◽  
M Rogic ◽  
K Porubska ◽  
C Canova ◽  
O Tschritter ◽  
...  

2022 ◽  
Vol 15 ◽  
Author(s):  
Shiyang Xu ◽  
Senqing Qi ◽  
Haijun Duan ◽  
Juan Zhang ◽  
Miriam Akioma ◽  
...  

The performance of working memory can be improved by the corresponding high-value vs. low-value rewards consciously or unconsciously. However, whether conscious and unconscious monetary rewards boosting the performance of working memory is regulated by the difficulty level of working memory task is unknown. In this study, a novel paradigm that consists of a reward-priming procedure and N-back task with differing levels of difficulty was designed to inspect this complex process. In particular, both high-value and low-value coins were presented consciously or unconsciously as the reward cues, followed by the N-back task, during which electroencephalogram signals were recorded. It was discovered that the high-value reward elicited larger event-related potential (ERP) component P3 along the parietal area (reflecting the working memory load) as compared to the low-value reward for the less difficult 1-back task, no matter whether the reward was unconsciously or consciously presented. In contrast, this is not the case for the more difficult 2-back task, in which the difference in P3 amplitude between the high-value and low-value rewards was not significant for the unconscious reward case, yet manifested significance for the conscious reward processing. Interestingly, the results of the behavioral analysis also exhibited very similar patterns as ERP patterns. Therefore, this study demonstrated that the difficulty level of a task can modulate the influence of unconscious reward on the performance of working memory.


2021 ◽  
Author(s):  
Quan Wan ◽  
Jorge A. Menendez ◽  
Bradley R. Postle

How does the brain prioritize among the contents of working memory to appropriately guide behavior? Using inverted encoding modeling (IEM), previous work (Wan et al., 2020) showed that unprioritized memory items (UMI) are actively represented in the brain but in a “flipped”, or opposite, format compared to prioritized memory items (PMI). To gain insight into the mechanisms underlying the UMI-to-PMI representational transformation, we trained recurrent neural networks (RNNs) with an LSTM architecture to perform a 2-back working memory task. Visualization of the LSTM hidden layer activity using Principle Component Analysis (PCA) revealed that the UMI representation is rotationally remapped to that of PMI, and this was quantified and confirmed via demixed PCA. The application of the same analyses to the EEG dataset of Wan et al. (2020) revealed similar rotational remapping between the UMI and PMI representations. These results identify rotational remapping as a candidate neural computation employed in the dynamic prioritization within contents of working memory.


2019 ◽  
Author(s):  
Roman Trepp ◽  
Raphaela Muri ◽  
Lenka Bosanska ◽  
Stephanie Abgottspon ◽  
Michel Hochuli ◽  
...  

Abstract Background The population of adult patients with early-treated phenylketonuria (PKU) following newborn screening is growing substantially. The ideal target range of blood Phe levels in adults outside pregnancy is discussed controversially. Therefore, prospective intervention studies are needed to evaluate the effects of an elevated Phe concentration on cognition and structural, functional and neurometabolic parameters of the brain. Methods The PICO (Phenylalanine and Its Impact on Cognition) Study evaluates the effect of a 4-week phenylalanine (Phe) load on cognition and cerebral parameters in 30 adults with early-treated PKU in a double-blind, randomized, placebo-controlled, crossover, non-inferiority trial. The primary objective of the PICO Study is to prospectively assess whether a temporarily elevated Phe level influences cognitive performance in adults with early-treated PKU. As secondary objective, the PICO Study will elucidate cerebral and neurometabolic mechanisms, which accompany changes in Phe concentration using advanced neuroimaging methods. In addition to the intervention study, cognition, structural and functional parameters of the brain of adult patients with early-treated PKU will be cross-sectionally compared to healthy controls, who will be comparable with regard to age, gender and education level. Advanced MR-techniques will be used to investigate intensity of neural activation during the working memory task (fMRI), strength of functional connectivity between brain regions related to performance in working memory (rsfMRI), white matter integrity (DTI), cerebral blood flow (ASL) and brain Phe concentrations (MRS). Discussion Using a combination of neuropsychological and neuroimaging data, the PICO study will considerably contribute to improve the currently insufficient level of evidence on how adult patients with early-treated PKU should be managed.


Sign in / Sign up

Export Citation Format

Share Document