scholarly journals More than surface temperature: mitigating thermal exposure in hyper-local land system

2022 ◽  
pp. 1-21
Author(s):  
V. Kelly Turner ◽  
Morgan L. Rogers ◽  
Yujia Zhang ◽  
Ariane Middel ◽  
Florian A. Schneider ◽  
...  
2011 ◽  
Vol 82 ◽  
pp. 362-367 ◽  
Author(s):  
Alexandra Byström ◽  
Ulf Wickström ◽  
Milan Veljkovic

The concept of Adiabatic Surface Temperature (AST) opens possibilities to calculate heat transfer to a solid surface based on one temperature instead of two as is needed when heat transfer by both radiation and convection must be considered. The Adiabatic Surface Temperature is defined as the temperature of a surface which cannot absorb or lose heat to the environment, i.e. a perfect insulator. Accordingly, the AST is a weighted mean temperature of the radiation temperature and the gas temperature depending on the heat transfer coefficients. A determining factor for introducing the concept of AST is that it can be measured with a cheap and robust method called the plate thermometer (PT), even under harsh fire conditions. Alternative methods for measuring thermal exposure under similar conditions involve water cooled heat flux meters that are in most realistic situations difficult to use and very costly and impractical. This paper presents examples concerning how the concept of AST can be used in practice both in reaction-to-fire tests and in large scale scenarios where structures are exposed to high and inhomogeneous temperature conditions.


2019 ◽  
pp. 9-13
Author(s):  
V.Ya. Mendeleyev ◽  
V.A. Petrov ◽  
A.V. Yashin ◽  
A.I. Vangonen ◽  
O.K. Taganov

Determining the surface temperature of materials with unknown emissivity is studied. A method for determining the surface temperature using a standard sample of average spectral normal emissivity in the wavelength range of 1,65–1,80 μm and an industrially produced Metis M322 pyrometer operating in the same wavelength range. The surface temperature of studied samples of the composite material and platinum was determined experimentally from the temperature of a standard sample located on the studied surfaces. The relative error in determining the surface temperature of the studied materials, introduced by the proposed method, was calculated taking into account the temperatures of the platinum and the composite material, determined from the temperature of the standard sample located on the studied surfaces, and from the temperature of the studied surfaces in the absence of the standard sample. The relative errors thus obtained did not exceed 1,7 % for the composite material and 0,5% for the platinum at surface temperatures of about 973 K. It was also found that: the inaccuracy of a priori data on the emissivity of the standard sample in the range (–0,01; 0,01) relative to the average emissivity increases the relative error in determining the temperature of the composite material by 0,68 %, and the installation of a standard sample on the studied materials leads to temperature changes on the periphery of the surface not exceeding 0,47 % for composite material and 0,05 % for platinum.


2019 ◽  
Vol 2 (1) ◽  
pp. 29-39 ◽  
Author(s):  
S. G. Konesev ◽  
P. A. Khlyupin

Introduction: the systems of thermal effects on thermo-dependent, viscous and highly viscous liquids under conditions of the Arctic and the Extreme North are considered. Low efficiency and danger of heating systems based on burned hydrocarbons, heated liquids and steam are shown. Electrothermal heating systems used to maintain thermo-dependent fluids in a fluid state are considered. The evaluation of the effectiveness of the application of the most common electrothermal system — heating cables (tapes). The most effective electrothermal system based on induction technologies has been determined. Materials and methods: considered methods of thermal exposure to maintain the fluid properties of thermo-dependent fluids at low extreme temperatures. Results: presents an induction heating system and options for its implementation in the Extreme North and the Arctic. Conclusions: induction heating system to minimize loss of product quality, improve the system performance under changing process conditions, eliminate fire product, to reduce the influence of the human factor.


2019 ◽  
Vol 1 (02) ◽  
pp. 64-67
Author(s):  
Meilisha Putri Pertiwi ◽  
Suci Siti Lathifah

Research on the condition of the nesting habitat of Chelonia mydas (green turtle) in Pangumbahan Beach, Ujung Genteng, South Sukabumi has been carried out. Data retrieval is done 6 times for 2 days, 27-28 November 2017 at 3 observation stations. The abiotic parameters measured include surface temperature and depth of 50 cm, surface humidity and depth of 50 cm, beach width, beach slope, and the size of sand grains. While the biotic parameters measured were density, relative density, the frequency of attendance, and distribution patterns of Pandanus tectorius (sea pandanus) vegetation. Based on the results of data processing, the biophysical conditions in Pangumbahan Beach are still suitable for the Chelonia mydas nesting habitat. It also got clear evidence of the many Chelonia mydas landings during the data collection.


Sign in / Sign up

Export Citation Format

Share Document