scholarly journals Components of population growth for Arctic foxes at a large Arctic goose colony: the relative contributions of adult survival and recruitment

2017 ◽  
Vol 36 (sup1) ◽  
pp. 6 ◽  
Author(s):  
Gustaf Samelius ◽  
Ray T. Alisauskas
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Daniel Oro ◽  
Daniel F. Doak

Abstract Standard procedures for capture–mark–recapture modelling (CMR) for the study of animal demography include running goodness-of-fit tests on a general starting model. A frequent reason for poor model fit is heterogeneity in local survival among individuals captured for the first time and those already captured or seen on previous occasions. This deviation is technically termed a transience effect. In specific cases, simple, uni-state CMR modeling showing transients may allow researchers to assess the role of these transients on population dynamics. Transient individuals nearly always have a lower local survival probability, which may appear for a number of reasons. In most cases, transients arise due to permanent dispersal, higher mortality, or a combination of both. In the case of higher mortality, transients may be symptomatic of a cost of first reproduction. A few studies working at large spatial scales actually show that transients more often correspond to survival costs of first reproduction rather than to permanent dispersal, bolstering the interpretation of transience as a measure of costs of reproduction, since initial detections are often associated with first breeding attempts. Regardless of their cause, the loss of transients from a local population should lower population growth rate. We review almost 1000 papers using CMR modeling and find that almost 40% of studies fitting the searching criteria (N = 115) detected transients. Nevertheless, few researchers have considered the ecological or evolutionary meaning of the transient phenomenon. Only three studies from the reviewed papers considered transients to be a cost of first reproduction. We also analyze a long-term individual monitoring dataset (1988–2012) on a long-lived bird to quantify transients, and we use a life table response experiment (LTRE) to measure the consequences of transients at a population level. As expected, population growth rate decreased when the environment became harsher while the proportion of transients increased. LTRE analysis showed that population growth can be substantially affected by changes in traits that are variable under environmental stochasticity and deterministic perturbations, such as recruitment, fecundity of experienced individuals, and transient probabilities. This occurred even though sensitivities and elasticities of these parameters were much lower than those for adult survival. The proportion of transients also increased with the strength of density-dependence. These results have implications for ecological and evolutionary studies and may stimulate other researchers to explore the ecological processes behind the occurrence of transients in capture–recapture studies. In population models, the inclusion of a specific state for transients may help to make more reliable predictions for endangered and harvested species.


2019 ◽  
Vol 286 (1906) ◽  
pp. 20190384 ◽  
Author(s):  
P.-L. Jan ◽  
L. Lehnen ◽  
A.-L. Besnard ◽  
G. Kerth ◽  
M. Biedermann ◽  
...  

The speed and dynamics of range expansions shape species distributions and community composition. Despite the critical impact of population growth rates for range expansion, they are neglected in existing empirical studies, which focus on the investigation of selected life-history traits. Here, we present an approach based on non-invasive genetic capture–mark–recapture data for the estimation of adult survival, fecundity and juvenile survival, which determine population growth. We demonstrate the reliability of our method with simulated data, and use it to investigate life-history changes associated with range expansion in 35 colonies of the bat species Rhinolophus hipposideros . Comparing the demographic parameters inferred for 19 of those colonies which belong to an expanding population with those inferred for the remaining 16 colonies from a non-expanding population reveals that range expansion is associated with higher net reproduction. Juvenile survival was the main driver of the observed reproduction increase in this long-lived bat species with low per capita annual reproductive output. The higher average growth rate in the expanding population was not associated with a trade-off between increased reproduction and survival, suggesting that the observed increase in reproduction stems from a higher resource acquisition in the expanding population. Environmental conditions in the novel habitat hence seem to have an important influence on range expansion dynamics, and warrant further investigation for the management of range expansion in both native and invasive species.


2009 ◽  
Vol 59 (1) ◽  
pp. 127-144 ◽  
Author(s):  
Lia Hemerik ◽  
Chris Klok ◽  
Maja Roodbergen

AbstractMany populations of wader species have shown a strong decline in number in Western-Europe in recent years. The use of simple population models such as matrix models can contribute to conserve these populations by identifying the most profitable management measures. Parameterization of such models is often hampered by the availability of demographic data (survival and reproduction). In particular, data on survival in the pre-adult (immature) stage of wader species that remain in wintering areas outside Europe are notoriously difficult to obtain, and are therefore virtually absent in the literature. To diagnose population decline in the wader species; Black-tailed Godwit, Curlew, Lapwing, Oystercatcher, and Redshank, we extended an existing modelling framework in which incomplete demographic data can be analysed, developed for species with a pre-adult stage of one year. The framework is based on a Leslie matrix model with three parameters: yearly reproduction (number of fledglings per pair), yearly pre-adult (immature) and yearly adult (mature) survival. The yearly population growth rate of these populations and the relative sensitivity of this rate to changes in survival and reproduction parameters (the elasticity) were calculated numerically and, if possible, analytically. The results showed a decrease in dependence on reproduction and an increase in pre-adult survival of the population growth rate with an increase in the duration of the pre-adult stage. In general, adult survival had the highest elasticity, but elasticity of pre-adult survival increased with time to first reproduction, a result not reported earlier. Model results showed that adult survival and reproduction estimates reported for populations of Redshank and Curlew were too low to maintain viable populations. Based on the elasticity patterns and the scope for increase in actual demographic parameters we inferred that conservation of the Redshank and both Curlew populations should focus on reproduction. For one Oystercatcher and the Black-tailed Godwit populations we suggested a focus on both reproduction and pre-adult survival. For the second Oystercatcher population pre-adult survival seemed the most promising target for conservation. And for the Lapwing populations all demographic parameters should be considered.


2006 ◽  
Vol 63 (9) ◽  
pp. 2050-2066 ◽  
Author(s):  
Luis A Vélez-Espino ◽  
Michael G Fox ◽  
Robert L McLaughlin

We applied elasticity analysis to 88 North American freshwater fishes to assess the relative impacts of changes in the vital rates on asymptotic population growth. Variance in vital rates was summarized for four distinct functional groups: (i) species with population growth rates strongly sensitive to perturbations in adult survival; (ii) species with population growth rates sensitive to perturbations in overall survival; (iii) species with population growth rates most sensitive to perturbations in juvenile survival; and (iv) species with population growth rates sensitive to perturbations in juvenile survival and fecundity. The results of the present study also showed that (a) elasticity patterns cannot be inferred in a straightforward manner from trade-offs between life-history traits, (b) the sensitivity of a population's growth rate to changes in adult survival and fecundity can be predicted empirically from life span and age at maturity, respectively, (c) elasticities are highly conserved among genera within the same taxonomic family, and (d) there are key divergences between elasticity patterns of freshwater fish and other vertebrate taxa.


2016 ◽  
Vol 97 (4) ◽  
pp. 1015-1025 ◽  
Author(s):  
Derek E. Lee ◽  
Monica L. Bond ◽  
Bernard M. Kissui ◽  
Yustina A. Kiwango ◽  
Douglas T. Bolger

Abstract Examination of spatial variation in demography among or within populations of the same species is a topic of growing interest in ecology. We examined whether spatial variation in demography of a tropical megaherbivore followed the “temporal paradigm” or the “adult survival paradigm” of ungulate population dynamics formulated from temperate-zone studies. We quantified spatial variation in demographic rates for giraffes (Giraffa camelopardalis) at regional and continental scales. Regionally, we used photographic capture-mark-recapture data from 860 adult females and 449 calves to estimate adult female survival, calf survival, and reproduction at 5 sites in the Tarangire ecosystem of Tanzania. We examined potential mechanisms for spatial variation in regional demographic rates. At the continental scale, we synthesized demographic estimates from published studies across the range of the species. We created matrix population models for all sites at both scales and used prospective and retrospective analyses to determine which vital rate was most important to variation in population growth rate. Spatial variability of demographic parameters at the continental scale was in agreement with the temporal paradigm of low variability in adult survival and more highly variable reproduction and calf survival. In contrast, at the regional scale, adult female survival had higher spatial variation, in agreement with the adult survival paradigm. At both scales, variation in adult female survival made the greatest contribution to variation in local population growth rates. Our work documented contrasting patterns of spatial variation in demographic rates of giraffes at 2 spatial scales, but at both scales, we found the same vital rate was most important. We also found anthropogenic impacts on adult females are the most likely mechanism of regional population trajectories.


2009 ◽  
Vol 276 (1663) ◽  
pp. 1911-1919 ◽  
Author(s):  
Sophie Grange ◽  
Patrick Duncan ◽  
Jean-Michel Gaillard

We investigated density dependence on the demographic parameters of a population of Camargue horses ( Equus caballus ), individually monitored and unmanaged for eight years. We also analysed the contributions of individual demographic parameters to changes in the population growth rates. The decrease in resources caused a loss of body condition. Adult male survival was not affected, but the survival of foals and adult females decreased with increasing density. Prime-aged females maintained high reproductive performance at high density, and their survival decreased. The higher survival of adult males compared with females at high density presumably results from higher investment in reproduction by mares. The high fecundity in prime-aged females, even when at high density, may result from artificial selection for high reproductive performance, which is known to have occurred in all the major domestic ungulates. Other studies suggest that feral ungulates including cattle and sheep, as these horses, respond differently from wild ungulates to increases in density, by trading adult survival for reproduction. As a consequence, populations of feral animals should oscillate more strongly than their wild counterparts, since they should be both more invasive (as they breed faster), and more sensitive to harsh environmental conditions (as the population growth rate of long-lived species is consistently more sensitive to a given proportional change in adult survival than to the same change in any other vital rate). If this principle proves to be general, it has important implications for management of populations of feral ungulates.


1997 ◽  
Vol 75 (12) ◽  
pp. 2027-2037 ◽  
Author(s):  
Ali El-Keblawy ◽  
K. H. Shaltout ◽  
J. Lovett-Doust ◽  
A. Ramadan

Natural populations of the evergreen shrub, Thymelaea hirsuta (L.) Endl., were studied over 6 years at five desert habitats, in terms of seedling recruitment and adult survival and as a function of plant size and gender class. Habitat and time significantly influenced mortality of both reproductive and non-reproductive plants. Plant size also significantly affected adult mortality. Seedling recruitment varied significantly with habitat and year and approached zero some years. Significant among-year and among-population variation in population growth rates were observed over the 6 years of study, and all populations declined in size (ranging from −1.7% per year at the coastal dune site to −10.9% per year at the inland plateau site). Spearman rank correlation analysis between habitats ranked according to a north–south gradient and demographic variables indicates that this gradient is associated with a pattern of lower seedling emergence and survival and a lower population growth rate and greater mortality for all size-classes of Thymelaea plants. In experimental botanic garden plots, germination of seed collected from five natural populations, and seedling survival in the following year were assessed under conditions of high, medium, and low seedling density. Seedling emergency differed significantly according to maternal habitat. With regular watering, seeding survival to one year was 72% (averaged across habitats and densities). This compares with 64% for seedlings grown at the highest density, suggesting that the intense mortality observed under field conditions is more likely to be a result of water shortage than intraspecific competition. Key words: Egyptian desert, Thymelaea hirsuta, germination and establishment, seedlings, recruitment, competition, population growth rate.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10708
Author(s):  
Douglas C. Heard ◽  
Kathryn L. Zimmerman

Most woodland caribou (Rangifer tarandus caribou) populations are declining primarily because of unsustainable predation resulting from habitat-mediated apparent competition. Wolf (Canis lupus) reduction is an effective recovery option because it addresses the direct effect of predation. We considered the possibility that the indirect effects of predation might also affect caribou population dynamics by adversely affecting summer foraging behaviour. If spring and/or summer nutrition was inadequate, then supplemental feeding in fall might compensate for that limitation and contribute to population growth. Improved nutrition and therefore body condition going into winter could increase adult survival and lead to improved reproductive success the next spring. To test that hypothesis, we fed high-quality food pellets to free-ranging caribou in the Kennedy Siding caribou herd each fall for six years, starting in 2014, to see if population growth rate increased. Beginning in winter 2015–16, the Province of British Columbia began a concurrent annual program to promote caribou population increase by attempting to remove most wolves within the Kennedy Siding and the adjacent caribou herds’ ranges. To evaluate the impact of feeding, we compared lambdas before and after feeding began, and to the population trend in the adjacent Quintette herd over the subsequent four years. Supplemental feeding appeared to have an incremental effect on population growth. Population growth of the Kennedy Siding herd was higher in the year after feeding began (λ = 1.06) compared to previous years (λ = 0.91) and to the untreated Quintette herd (λ = 0.95). Average annual growth rate of the Kennedy Siding herd over the subsequent four years, where both feeding and wolf reduction occurred concurrently, was higher than in the Quintette herd where the only management action in those years was wolf reduction (λ = 1.16 vs. λ = 1.08). The higher growth rate of the Kennedy Siding herd was due to higher female survival (96.2%/yr vs. 88.9%/yr). Many caribou were in relatively poor condition in the fall. Consumption of supplemental food probably improved their nutritional status which ultimately led to population growth. Further feeding experiments on other caribou herds using an adaptive management approach would verify the effect of feeding as a population recovery tool. Our results support the recommendation that multiple management actions should be implemented to improve recovery prospects for caribou.


2019 ◽  
Vol 97 (2) ◽  
pp. 112-120 ◽  
Author(s):  
Michael E. Wheeler ◽  
Jeb A. Barzen ◽  
Shawn M. Crimmins ◽  
Timothy R. Van Deelen

Population growth rate in long-lived bird species is often most sensitive to changes in adult survival. Sandhill Cranes (Antigone canadensis (Linnaeus, 1758)) have long life spans, small broods, and delayed first reproduction. Only territorial adult Sandhill Cranes participate in breeding, and territory acquisition reflects the interplay between the availability of suitable territories and the variation in mortality of adult birds occupying those territories. We estimated vital rates of a population at equilibrium using long-term resightings data (2000–2014; n = 451 marked individuals) in a multistate mark–resight model and used a stage-structured projection matrix to assess how strongly territorial adult survival affects population growth rate. Elasticity analysis indicated territorial birds surviving and retaining territories had a 2.58 times greater impact on population growth compared with the next most important transition rate (survival of nonterritorial adults remaining nonterritorial). Knowing how changes in vital rates of various stage classes will differentially impact population growth rate allows for targeted management actions including encouraging growth in recovering populations, assessing opportunity for recreational harvest, or maintaining populations at a desired level. This study also highlights the value of collecting demographic data for all population segments, from which one can derive reproductive output or growth rate.


1985 ◽  
Vol 42 (5) ◽  
pp. 873-879 ◽  
Author(s):  
J. M. Berkson ◽  
D. P. DeMaster

A series of population simulations were used to test the accuracy of estimating the discrete rates of population change (RPC) from annual pup counts. The simulations indicate that pup counts can give a biased estimate of RPC, and that the magnitude and direction of bias depends on which life history parameters are density dependent and on the maximum rate of population change. In general, if pre-census pup survival is density dependent the estimated RPC using pup counts is too low. If post-census pup survival is density dependent, the estimated RPC is too high. If adult survival is density dependent, there is very little bias in the estimate. The results indicate that pup counts can be reliable indicators of population growth, but caution should be used in interpreting the results unless density feedback mechanisms have been identified.


Sign in / Sign up

Export Citation Format

Share Document