A Study Into the Use of Milliflex Quantum as Rapid Microbial Detection Method for Microorganisms in Pharmaceutical...

Author(s):  
Tim Sandle

Control of pharmaceutical water systems represents an essential part of Good Manufacturing Practice and embedded within this is the quality control testing of water systems for viable microorganisms, and subjecting the data obtained to trend analysis. This has traditionally been achieved by membrane filtration and the use of a culture medium. While such test methodologies can recover a level of the bioburden present, the incubation times are lengthy. To address the problem of time-to-result, rapid microbiological methods offer an alternative approach. One such example is the Milliflex Quantum, which is the focus of this article.

2018 ◽  
Vol 44 (1) ◽  
pp. 5
Author(s):  
Carla Rosane Rodenbusch ◽  
Luiz Roberto da Silveira ◽  
Álvaro Ricardo Bavaresco ◽  
Marcus Vinícius Burgel Sfoggia

Background: Foot-and-mouth vaccines are an important tool in the control and eradication of the disease. In order to be commercialized, vaccines produced in Brazil undergo an evaluation process by health authorities, which includes sterility testing, residual active virus, potency, thermal stability, volume and non-structural protein activity. Sterility tests described in the Brazilian Pharmacopeia and by the World Organization for Animal Health (OIE) include direct inoculation and membrane filtration methods. The objective of the present study was to evaluate these two methods used to analyze sterility of vaccines against foot-and-mouth disease produced in Brazil.Materials, Methods & Results: Vaccines produced by the six main laboratories in Brazil were initially tested for filtration capacity. The sensitivity of the two techniques was determined artificially contaminating vaccines using known bacterial concentrations. Vaccines (9 bottles) from the same manufacturer were inoculated with 5 mL of steady-state growths of Pseudomonas aeruginosa, Candida albicans, and Clostridium sporogenes to final concentrations of 0.1, 1 and 10 CFU/ mL and a final volume of 55 mL. Bottles were manually shaken for 1 min to complete homogenization of contents. Then, 10 mL of each flask were used in assessment of the direct inoculation method, and 10 mL were used to evaluate the membrane filtration technique. Direct inoculation was carried out inoculating 1 mL of the experimentally contaminated vaccine in five tryptic soy broth (TSB) and fluid thioglycollate medium (FTM) bottles. The membrane filtration technique was carried out filtrating 10 mL of the challenged vaccines in a peristaltic pump system (SteritestTM Pump System), where vaccines were initially solubilized in Triton X-100 to promote filtration. Next, membranes are incubated in TSB and FTM. These use two types of culture medium, tryptic soy broth (TSB) and fluid thioglycollate medium (FTM), with incubation times of 20-25ºC and 30-35ºC, respectively, to detect fungi, yeasts, and aerobic and anaerobic bacteria. The medium is incubated for 14 days, to enable the detection of slow-growth microorganisms that may be in a latent stage or weakened due to the extreme conditions of the production process (like the use of cleaning and disinfection agents, ultraviolet light, and preservers, for instance). All vaccines were effectively filtered in the SteritestTM Pump System. Membrane filtration and direct inoculation presented the same sensitivity to detect yeasts (0.1 CFU/mL) and anaerobic organisms (1 CFU/mL). For the detection of aerobic organisms, membrane filtration was 100 times more sensitive, compared to direct inoculation.Discussion: The specialized literature also reports that, apart from the higher sensitivity, membrane filtration affords to reduce contamination during the procedures, since it is carried out in a closed system. In addition, it is indicated in the analysis of large sample volumes. Moreover, membrane filtration reduces the occurrence of false positive results, since it removes the excess vaccine volume from the culture medium, which may be mistaken for turbidity caused by bacterial growth. In this sense, the membrane filtration technique is more appropriate in the control of vaccine sterility in foot-andmouth disease prevention strategies, and is an interesting tool to improve quality control of the product.


2019 ◽  
Vol 7 (8) ◽  
pp. 237 ◽  
Author(s):  
Chun-Chieh Tseng ◽  
Dan Chi Chang ◽  
Kai-Chih Chang

The application of bacteriophages for biocontrol has attracted increasing attention. Here, we applied ϕBTCU-1 as a model phage to develop a method for controlling Mycobacterium tuberculosis (MTB) by using a bacteriophage-containing aerosol in a chamber study. The soil-isolated ϕBTCU-1 can infect both MTB and Mycobacterium smegmatis. Our study used M. smegmatis as an MTB surrogate for safety reasons. Among all the evaluated air samplers, the Andersen impactor was chosen to evaluate the bactericidal efficiency of ϕBTCU-1 against M. smegmatis since the recovery rates of the Andersen impactor were 1.5 to 10.6 times higher than those of sampling filters. When airborne ϕBTCU-1 with the highest concentration of 109 PFU/m3 challenged M. smegmatis (105 CFU/m3) for 10 s, no M. smegmatis colony was recovered from the culture medium. For surface decontamination, no colony of M. smegmatis, which started at 1000 CFU/plate (63.6 cm2), was recovered when exposed to higher ϕBTCU-1 concentrations (>109 PFU/m3) for 60 min. Bacteriophages may be useful for reducing MTB contamination in the air or on hard surfaces. The method we have established suggests that the biocontrol method may be an alternative approach or may be combined with other disinfection methods to prevent MTB infection.


1996 ◽  
Vol 59 (4) ◽  
pp. 416-419 ◽  
Author(s):  
PHYLLIS ENTIS ◽  
IRINA LERNER

A 2-day yeast and mold enumeration procedure using the ISO-GRID® membrane filtration system in conjunction with a new culture medium, YM-11 agar, was compared to the conventional 5-day pour plate method using antibiotic-supplemented potato dextrose agar. Performance of the new method was evaluated using both pure cultures of yeasts and molds and 275 food samples, representing 25 different food products. The 2-day ISO-GRID® method yielded counts equivalent to or significantly higher than the 5-day pour plate method in 23 of the 25 food product categories.


2010 ◽  
Vol 3 (1) ◽  
pp. 43-64
Author(s):  
P. Deines ◽  
R. Sekar ◽  
H. S. Jensen ◽  
S. Tait ◽  
J. B. Boxall ◽  
...  

Abstract. Microbiology in Urban Water Systems (MUWS) is an integrated project, which aims to characterize the microorganisms found in both potable water distribution systems and sewer networks. These large infrastructure systems have a major impact on our quality of life, and despite the importance of these systems as major components of the water cycle, little is known about their microbial ecology. Potable water distribution systems are large, highly interconnected and dynamic, and difficult to control. Sewer systems are also large and subject to time varying inputs and demands. Their performance also faces increasing loading due to increasing urbanization and longer-term environmental changes. Therefore, understanding the link between microbial ecology and any potential impacts on short or long-term engineering performance is important. By combining the strengths and research expertise of civil-, biochemical engineers and molecular microbial ecologists, we aim to link the abundance and diversity of microorganisms to physical and engineering variables so that novel insights into the ecology of microorganisms within both water distribution systems and sewer networks can be explored. By presenting the details of this multidisciplinary approach, and the principals behind the molecular microbiological methods and techniques that we use, this paper will demonstrate the potential of an integrated approach to better understand urban water system function and so meet future challenges.


2021 ◽  
Vol 18 (4) ◽  
pp. 93-98
Author(s):  
A. I. Zhabrouskaya ◽  
O. A. Emeliyanova ◽  
N. V. Dudchik

Objective. To assess internal environment objects ofsecond cleanliness class health care facilities according to microbiological standards.Materials and methods. The methods of swabbing, direct seeding, membrane filtration and instrumental aspiration were used for sampling. The microbial status was analyzed by cultural and biochemical methods on nutrient, differential and diagnostic media with species identification using the microbiological analyzer. The phenotypic features were studied in vitro by the standard biochemical and microbiological methods in accordance with the principles of good laboratory practice.Results. The microbiological testing of indoor air and internal environment objects of second cleanliness class health care facilities (dental offices) was done to determine the qualitative and quantitative composition of the microbiota. As a result of the taxonomic identification, it has been found that the most common representatives of the air microbiota are Staphylococcus, Micrococcus and Kocuria bacteria, which are true residents of the human dermis.Conclusion. The obtained data provide material for the study of the phenomenon of the modification of phenotypic properties and its use at the stages of hazard detection and profiling and for the minimization of uncertainty within the concept of microbial risk analysis.


Sign in / Sign up

Export Citation Format

Share Document