An integrative exploratory analysis of –omics data from the ICGC cancer genomes lung adenocarcinoma study

2014 ◽  
Vol 2 (3) ◽  
pp. 54-62 ◽  
Author(s):  
Sinjini Sikdar ◽  
Hyoyoung Choo Wosoba ◽  
Younathan Abdia ◽  
Sandipan Dutta ◽  
Ryan Gill ◽  
...  
2020 ◽  
Vol 14 ◽  
pp. 117955492096626
Author(s):  
Yun Liu ◽  
Fu Liu ◽  
Xintong Hu ◽  
Jiaxue He ◽  
Yanfang Jiang

Motivation: Although several prognostic signatures for lung adenocarcinoma (LUAD) have been developed, they are mainly based on a single-omics data set. This article aims to develop a novel set of prognostic signatures by combining genetic mutation and expression profiles of LUAD patients. Methods: The genetic mutation and expression profiles, together with the clinical profiles of a cohort of LUAD patients from The Cancer Genome Atlas (TCGA), were downloaded. Patients were separated into 2 groups, namely, the high-risk and low-risk groups, according to their overall survivals. Then, differential analysis was performed to determine differentially expressed genes (DEGs) and mutated genes (DMGs) in the expression and mutation profiles, respectively, between the 2 groups. Finally, a prognostic model based on the support vector machine (SVM) algorithm was developed by combining the expression values of the DEGs and the mutation times of the DMGs. Results: A total of 13 DEGs and 7 DMGs were recognized between the 2 groups. Their prognostic values were validated using independent cohorts. Compared with several existing signatures, the proposed prognostic signatures exhibited better prediction performance in the testing set. In addition, it is found that 1 of the 7 DMGs, GRIN2B, is mutated much more frequently in the high-risk group, showing a potential value as a therapy target. Conclusions: Combining multi-omics data sets is an applicable manner to identify novel prognostic signatures and to improve the prognostic prediction for LUAD, which will be heuristic to other types of cancers.


2021 ◽  
Vol 10 ◽  
Author(s):  
Benjamin B. Morris ◽  
Nolan A. Wages ◽  
Patrick A. Grant ◽  
P. Todd Stukenberg ◽  
Ryan D. Gentzler ◽  
...  

It has long been recognized that defects in cell cycle checkpoint and DNA repair pathways give rise to genomic instability, tumor heterogeneity, and metastasis. Despite this knowledge, the transcription factor-mediated gene expression programs that enable survival and proliferation in the face of enormous replication stress and DNA damage have remained elusive. Using robust omics data from two independent studies, we provide evidence that a large cohort of lung adenocarcinomas exhibit significant genome instability and overexpress the DNA damage responsive transcription factor MYB proto-oncogene like 2 (MYBL2). Across two studies, elevated MYBL2 expression was a robust marker of poor overall survival and disease-free survival outcomes, regardless of disease stage. Clinically, elevated MYBL2 expression identified patients with aggressive early onset disease, increased lymph node involvement, and increased incidence of distant metastases. Analysis of genomic sequencing data demonstrated that MYBL2 High lung adenocarcinomas had elevated somatic mutation burden, widespread chromosomal alterations, and alterations in single-strand DNA break repair pathways. In this study, we provide evidence that impaired single-strand break repair, combined with a loss of cell cycle regulators TP53 and RB1, give rise to MYBL2-mediated transcriptional programs. Omics data supports a model wherein tumors with significant genomic instability upregulate MYBL2 to drive genes that control replication stress responses, promote error-prone DNA repair, and antagonize faithful homologous recombination repair. Our study supports the use of checkpoint kinase 1 (CHK1) pharmacological inhibitors, in targeted MYBL2 High patient cohorts, as a future therapy to improve lung adenocarcinoma patient outcomes.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1872
Author(s):  
Yingxia Li ◽  
Ulrich Mansmann ◽  
Shangming Du ◽  
Roman Hornung

Lung adenocarcinoma (LUAD) is a common and very lethal cancer. Accurate staging is a prerequisite for its effective diagnosis and treatment. Therefore, improving the accuracy of the stage prediction of LUAD patients is of great clinical relevance. Previous works have mainly focused on single genomic data information or a small number of different omics data types concurrently for generating predictive models. A few of them have considered multi-omics data from genome to proteome. We used a publicly available dataset to illustrate the potential of multi-omics data for stage prediction in LUAD. In particular, we investigated the roles of the specific omics data types in the prediction process. We used a self-developed method, Omics-MKL, for stage prediction that combines an existing feature ranking technique Minimum Redundancy and Maximum Relevance (mRMR), which avoids redundancy among the selected features, and multiple kernel learning (MKL), applying different kernels for different omics data types. Each of the considered omics data types individually provided useful prediction results. Moreover, using multi-omics data delivered notably better results than using single-omics data. Gene expression and methylation information seem to play vital roles in the staging of LUAD. The Omics-MKL method retained 70 features after the selection process. Of these, 21 (30%) were methylation features and 34 (48.57%) were gene expression features. Moreover, 18 (25.71%) of the selected features are known to be related to LUAD, and 29 (41.43%) to lung cancer in general. Using multi-omics data from genome to proteome for predicting the stage of LUAD seems promising because each omics data type may improve the accuracy of the predictions. Here, methylation and gene expression data may play particularly important roles.


Sign in / Sign up

Export Citation Format

Share Document