scholarly journals Lantana camara Linn root extract-mediated gold nanoparticles and their in vitro antioxidant and cytotoxic potentials

2017 ◽  
Vol 45 (4) ◽  
pp. 748-757 ◽  
Author(s):  
Rajendiran Ramkumar ◽  
Govindasamy Balasubramani ◽  
Ramalingam Karthik Raja ◽  
Manickam Raja ◽  
Raji Govindan ◽  
...  
Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4469 ◽  
Author(s):  
Michele S. Majoumouo ◽  
Jyoti R. Sharma ◽  
Nicole R. S. Sibuyi ◽  
Marius B. Tincho ◽  
Fabrice F. Boyom ◽  
...  

Scientists have demonstrated the potential of plant materials as ‘green’ reducing and stabilizing agents for the synthesis of gold nanoparticles (AuNPs) and opened new ecofriendly horizons to develop effective and less harmful treatment strategies. The current study demonstrated the use of Terminalia mantaly (TM) extracts to synthesize AuNPs with enhanced cytotoxic effects. The TM-AuNPs were synthesized at 25 and 70 °C using water (WTM) and methanolic (MTM) extracts of the leaf, root and stem/bark parts of the plant. The TM-AuNPs were characterized using UV–visible spectrophotometry, dynamic light scattering (DLS), transmission electron microscopy, energy dispersive X-ray (EDX), selection area electron diffraction (SAED) and Fourier transform infrared (FTIR) spectroscopy. Majority of the TM-AuNPs were spherical with a mean diameter between 22.5 and 43 nm and were also crystalline in nature. The cytotoxic effects of TM-AuNPs were investigated in cancer (Caco-2, MCF-7 and HepG2) and non-cancer (KMST-6) cell lines using the MTT assay. While the plant extracts showed some cytotoxicity towards the cancer cells, some of the TM-AuNPs were even more toxic to the cells. The IC50 values (concentrations of the AuNPs that inhibited 50% cell growth) as low as 0.18 µg/mL were found for TM-AuNPs synthesized using the root extract of the plant. Moreover, some of the TM-AuNPs demonstrated selective toxicity towards specific cancer cell types. The study demonstrates the potential of TM extracts to produce AuNPs and describe the optimal conditions for AuNPs using TM extracts. The toxicity of some the TM-AuNPs can possibly be explored in the future as an antitumor treatment.


Author(s):  
S Farahani ◽  
N Riyahi Alam ◽  
S Haghgoo ◽  
M Khoobi ◽  
Gh Geraily ◽  
...  

Background: Numerous unique characteristics of the nanosized gold, including high atomic number, low toxicity, and high biocompatibility make it one of the most appropriate nanostructures to boost radiotherapy efficacy. Many in-vivo and in-vitro investigations have indicated that gold nanoparticles (AuNPs) can significantly increase tumor injuries in low kilovoltage radiotherapy. While deep-lying tumors require much higher energy levels with greater penetration power, and investigations carried out in megavoltage energy range show contradictory results.Objective: In this study, we quantitatively assess and compare dose enhancement factors (DEFs) obtained through AuNPs under radiation of Cobalt-60 source (1.25MeV) versus Iridium-192 source (0.380 KeV) using MAGAT gel dosimeter.Material and Methods: MAGAT polymer gel in both pure and combined with 0.2 mM AuNPs was synthesized. In order to quantify the effect of energy on DEF, irradiation was carried out by Co-60 external radiotherapy and Ir-192 internal radiotherapy. Finally, readings of irradiated and non-irradiated gels were performed by MR imaging.Result: The radiation-induced R2 (1/T2) changes of the gel tubes doped with AuNPs compared to control samples, upon irradiation of beams released by Ir-192 source showed a significant dose enhancement (15.31% ±0.30) relative to the Co-60 external radiotherapy (5.85% ±0.14).Conclusion: This preliminary study suggests the feasibility of using AuNPs in radiation therapy (RT), especially in low-energy sources of brachytherapy. In addition, MAGAT polymer gel, as a powerful dosimeter, could be used for 3D visualization of radiation dose distribution of AuNPs in radiotherapy.


2018 ◽  
Vol 14 (4) ◽  
pp. 329-334
Author(s):  
Ahmad Shanei ◽  
Neda Attaran ◽  
Marziyeh Mirzaeiyan ◽  
Mohammad Reza Salamat ◽  
Hossein Hejazi

2020 ◽  
Vol 16 (2) ◽  
pp. 204-213 ◽  
Author(s):  
Melissa A. Vetten ◽  
Mary Gulumian

Background: Endotoxin-free engineered nanoparticle suspensions are imperative for their successful applications in the field of nanomedicine as well as in the investigations in their toxicity. Gold nanoparticles are known to interfere with various in vitro assays due to their optical properties and potential for surface reactivity. In vitro endotoxin testing assays are known to be susceptible to interference caused by the sample being tested. Objective: This study aimed to identify a preferred assay for the testing of endotoxin contamination in gold nanoparticle suspensions. Methods: The interference by gold nanoparticles on three assays namely, the commonly used limulus amebocyte lysate chromogenic assay, the limulus amebocyte lysate gel-clot method, and the less common recombinant Factor C (rFC) assay, was tested. Results: Possible interference could be observed with all three assays. The interference with the absorbance- based chromogenic assay could not be overcome by dilution; whilst the qualitative nature of the gel-clot assay excluded the possibility of distinguishing between a false positive result due to enhancement of the sensitivity of the assay, and genuine endotoxin contamination. However, interference with the rFC assay was easily overcome through dilution. Conclusion: The rFC assay is recommended as an option for endotoxin contamination detection in gold nanoparticle suspensions.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Allison M. Khoo ◽  
Sang Hyun Cho ◽  
Francisco J. Reynoso ◽  
Maureen Aliru ◽  
Kathryn Aziz ◽  
...  

2020 ◽  
Vol 22 (1) ◽  
pp. 233
Author(s):  
Eunkuk Park ◽  
Chang Gun Lee ◽  
Eunguk Lim ◽  
Seokjin Hwang ◽  
Seung Hee Yun ◽  
...  

Osteoporosis is a common disease caused by an imbalance of processes between bone resorption by osteoclasts and bone formation by osteoblasts in postmenopausal women. The roots of Gentiana lutea L. (GL) are reported to have beneficial effects on various human diseases related to liver functions and gastrointestinal motility, as well as on arthritis. Here, we fractionated and isolated bioactive constituent(s) responsible for anti-osteoporotic effects of GL root extract. A single phytochemical compound, loganic acid, was identified as a candidate osteoprotective agent. Its anti-osteoporotic effects were examined in vitro and in vivo. Treatment with loganic acid significantly increased osteoblastic differentiation in preosteoblast MC3T3-E1 cells by promoting alkaline phosphatase activity and increasing mRNA expression levels of bone metabolic markers such as Alpl, Bglap, and Sp7. However, loganic acid inhibited osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. For in vivo experiments, the effect of loganic acid on ovariectomized (OVX) mice was examined for 12 weeks. Loganic acid prevented OVX-induced bone mineral density loss and improved bone structural properties in osteoporotic model mice. These results suggest that loganic acid may be a potential therapeutic candidate for treatment of osteoporosis.


Author(s):  
Dariusz Kulus ◽  
Alicja Tymoszuk

AbstractThe popularity of nanoparticles (NPs) is continuously increasing. To date, however, there has been little research on the application of NPs in plant cryopreservation, i.e. storage of tissues in liquid nitrogen (LN). The aim of this study is to analyze the effect and evaluate the usefulness of gold nanoparticles (AuNPs) in regard to cryobiology studies. In vitro-derived shoot tips of Lamprocapnos spectabilis ‘Valentine’ were cryopreserved with the encapsulation-vitrification protocol. Gold nanoparticles (at 10–30 ppm concentration; 13 nm in size) were added either into the preculture medium; to the protective bead matrix during encapsulation; or to the recovery medium after rewarming of samples. The control plants were produced from cryopreserved explants non-treated with nanoparticles or treated with colloid dispersion medium without NPs. A non-LN-treated standard was also considered. The influence of AuNPs on the cryopreservation efficiency was determined by evaluating the recovery rate of explants and their morphogenic response; the membrane stability index (MSI); the concentration of pigments in shoots; and the antioxidant enzymes activity. The genetic stability of the plant material was evaluated using Start Codon Targeted Polymorphism (SCoT) markers. It was found that 10 ppm of AuNPs added into the alginate bead matrix improved the recovery level of LN-derived shoot tips (70.0%) compared to the non-NPs-treated cryopreserved control (50.5%). On the other hand, the presence of nanoparticles in the recovery medium had a deleterious effect on the survival of explants. AuNPs usually had no impact on the MSI (73.9–85.9%), except for those added into the recovery medium at the concentration of 30 ppm (decline to 55.8%). All LN-derived shoots were shorter and contained less chlorophyll and carotenoids than the untreated standard. Moreover, the application of AuNPs affected the enzymatic activity in L. spectabilis. Minor genetic variation was found in 8.6% of plants if AuNPs were added either into the preculture medium (at 10 and 20 ppm) or to the alginate matrix (at 30 ppm). In conclusion, AuNPs added at a lower concentration (10 ppm) into the protective bead matrix can significantly improve the cryopreservation efficiency in L. spectabilis with no alternation in the DNA sequence.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1094
Author(s):  
Allan Radaic ◽  
Nam E. Joo ◽  
Soo-Hwan Jeong ◽  
Seong-II Yoo ◽  
Nicholas Kotov ◽  
...  

Prostate and breast cancer are the current leading causes of new cancer cases in males and females, respectively. Phosphatidylserine (PS) is an essential lipid that mediates macrophage efferocytosis and is dysregulated in tumors. Therefore, developing therapies that selectively restore PS may be a potential therapeutic approach for carcinogenesis. Among the nanomedicine strategies for delivering PS, biocompatible gold nanoparticles (AuNPs) have an extensive track record in biomedical applications. In this study, we synthesized biomimetic phosphatidylserine-caped gold nanoparticles (PS-AuNPs) and tested their anticancer potential in breast and prostate cancer cells in vitro. We found that both cell lines exhibited changes in cell morphology indicative of apoptosis. After evaluating for histone-associated DNA fragments, a hallmark of apoptosis, we found significant increases in DNA fragmentation upon PS-AuNP treatment compared to the control treatment. These findings demonstrate the use of phosphatidylserine coupled with gold nanoparticles as a potential treatment for prostate and breast cancer. To the best of our knowledge, this is the first time that a phosphatidylserine-capped AuNP has been examined for its therapeutic potential in cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document