The Effect of Citric Acid Added to Hydroxypropyl Methylcellulose (HPMC) Matrix Tablets on the Release Profile of Vinpocetine

2004 ◽  
Vol 30 (6) ◽  
pp. 627-635 ◽  
Author(s):  
Shufang Nie ◽  
Weisan Pan ◽  
Xiaodong Li ◽  
Xueming Wu
2003 ◽  
Vol 251 (1-2) ◽  
pp. 183-193 ◽  
Author(s):  
Ilona Martı́nez González ◽  
Leopoldo Villafuerte Robles

Author(s):  
Bhikshapathi D. V. R. N. ◽  
Haarika B ◽  
Jyothi Sri S ◽  
K Abbulu

The purpose of present investigation was to develop floating matrix tablets of gemifloxacin mesylate, which after oral administration could prolong the gastric residence time, increase the drug bioavailability and diminish the side effects of irritating drugs. Tablets containing drug, various viscosity grades of hydroxypropyl methylcellulose such as HPMC K4M and HPMC K15M as matrix forming agent, Sodium bicarbonate as gas-forming agent and different additives were tested for their usefulness in formulating gastric floating tablets by direct compression method. The physical parameters, in vitro buoyancy, release characteristics and in vivo radiographic study were investigated in this study. The gemifloxacin mesylate floating tablets were prepared using HPMC K4M polymer giving more sustained drug release than the tablet containing HPMC K15M. All these formulations showed floating lag time of 30 to 47 sec and total floating time more than 12 h. The drug release was decreased when polymer concentration increases and gas generating agent decreases. Formulation that contains maximum concen-tration of both HPMC K15M and sodium bicarbonate (F9) showing sufficiently sustained with 99.2% of drug release at 12 h. The drug release from optimized formulation follows Higuchi model that indicates the diffusion controlled release. The best formulation (F9) was selected based on in vitro characteristics and used in vivo radiographic studies by incorporating barium sulphate as a radio-opaque agent and the tablet remained in the stomach for about 6 h.   


Author(s):  
Nirmala Rangu ◽  
Gande Suresh

The present study was aimed to develop once-daily controlled release trilayer matrix tablets of nelfinavir to achieve zero-order drug release for sustained plasma concentration. Nelfinavir trilayer matrix tablets were prepared by direct compression method and consisted of middle active layer with different grades of hydroxypropyl methylcellulose (HPMC), PVP (Polyvinyl Pyrrolidine) K-30 and MCC (Micro Crystalline Cellulose). Barrier layers were prepared with Polyox WSR-303, Xanthan gum, microcrystalline cellulose and magnesium stearate. Based on the evaluation parameters, drug dissolution profile and release drug kinetics DF8 were found to be optimized formulation. The developed drug delivery system provided prolonged drug release rates over a period of 24 h. The release profile of the optimized formulation (DF8) was described by the zero-order and best fitted to Higuchi model. FT-IR studies confirmed that there were no chemical interactions between drug and excipients used in the formulation. These results indicate that the approach used could lead to a successful development of a controlled release formulation of nelfinavir in the management of AIDS.


2019 ◽  
Vol 9 (1) ◽  
pp. 29-36
Author(s):  
Bijaya Ghosh ◽  
Niraj Mishra ◽  
Preeta Bose ◽  
Moumita D. Kirtania

Objective: Rheumatoid arthritis is a dreaded disease, characterized by pain, inflammation and stiffness of joints, leading to severe immobility problems. The disease shows circadian variation and usually gets aggravated in early morning hours. Aceclofenac, a BCS Class II compound is routinely used in the treatment of pain and inflammation associated with rheumatoid arthritis. The objective of this study was to develop an osmotic delivery system of Aceclofenac that after administration at bedtime would deliver the drug in the morning hours. </P><P> Methods: A series of osmotically controlled systems of aceclofenac was developed by using lactose, sodium chloride and hydroxypropyl methylcellulose K100M as osmogens. Cellulose acetate (2% w/v in acetone) with varying concentrations of polyethylene glycol-400 was used as the coating polymer to create semi permeable membrane and dissolution was carried out in 290 mOsm phosphate buffer. Formulation optimization was done from four considerations: cumulative release at the end of 6 hours (lag time), cumulative release at the end of 7 hours (burst time), steady state release rate and completeness of drug release. </P><P> Results: A formulation having swelling polymer hydroxypropyl methylcellulose in the core and lactose and sodium chloride as osmogens, polyethylene glycol-400 (16.39 %) as pore former, with a coating weight of 5% was a close fit to the target release profile and was chosen as the optimum formulation. Conclusion: Aceclofenac tablets containing lactose, HPMC and sodium chloride in the core, given a coating of cellulose acetate and PEG-400 (5% wt gain), generated a release profile for optimum management of rheumatoid arthritic pain.


2011 ◽  
Vol 61 (2) ◽  
pp. 217-226 ◽  
Author(s):  
Komuravelly Someshwar ◽  
Kalyani Chithaluru ◽  
Tadikonda Ramarao ◽  
K. Kumar

Formulation and evaluation of effervescent floating tablets of tizanidine hydrochloride Tizanidine hydrochloride is an orally administered prokinetic agent that facilitates or restores motility through-out the length of the gastrointestinal tract. The objective of the present investigation was to develop effervescent floating matrix tablets of tizanidine hydrochloride for prolongation of gastric residence time in order to overcome its low bioavailability (34-40 %) and short biological half life (4.2 h). Tablets were prepared by the direct compression method, using different viscosity grades of hydroxypropyl methylcellulose (HPMC K4M, K15M and K100M). Tablets were evaluated for various physical parameters and floating properties. Further, tablets were studied for in vitro drug release characteristics in 12 hours. Drug release from effervescent floating matrix tablets was sustained over 12 h with buoyant properties. DSC study revealed that there is no drug excipient interaction. Based on the release kinetics, all formulations best fitted the Higuchi, first-order model and non-Fickian as the mechanism of drug release. Optimized formulation (F9) was selected based on the similarity factor (f2) (74.2), dissolution efficiency at 2, 6 and 8 h, and t50 (5.4 h) and was used in radiographic studies by incorporating BaSO4. In vivo X-ray studies in human volunteers showed that the mean gastric residence time was 6.2 ± 0.2 h.


Author(s):  
Mohini Sihare ◽  
Rajendra Chouksey

Aim: Nateglinide is a quick acting anti-diabetic medication whose potent activity lasts for a short duration. One of the dangerous side effects of nateglinide administration is rapid hypoglycemia, a condition that needs to be monitored carefully to prevent unnecessary fatalities. The aim of the study was to develop a longer lasting and slower releasing formulation of nateglinide that could be administered just once daily. Methods: Matrix tablets of nateglinide were prepared in combination with the polymers hydroxypropylmethylcellulose (HPMC), eudragits, ethyl cellulose and polyethylene oxide and the formulated drug release patterns were evaluated using in vitro and in vivo studies. Conclusion: Of the seventeen formulated matrix tablets tested, only one formulation labelled HA-2 that contained 15% HPMC K4M demonstrated release profile we had aimed for. Further, swelling studies and scanning electron microscopic analysis confirmed the drug release mechanism of HA-2. The optimized formulation HA-2 was found to be stable at accelerated storage conditions for 3 months with respect to drug content and physical appearance. Mathematical analysis of the release kinetics of HA-2 indicated a coupling of diffusion and erosion mechanisms. In-vitro release studies and pharmacokinetic in vivo studies of HA-2 in rabbits confirmed the sustained drug release profile we had aimed for. Keywords: Hydroxypropylmethylcellulose, Matrix tablets, Nateglinide, Sustained release


Sign in / Sign up

Export Citation Format

Share Document