scholarly journals Tenascin is associated with chondrogenic and osteogenic differentiation in vivo and promotes chondrogenesis in vitro.

1987 ◽  
Vol 105 (6) ◽  
pp. 2569-2579 ◽  
Author(s):  
E J Mackie ◽  
I Thesleff ◽  
R Chiquet-Ehrismann

The tissue distribution of the extracellular matrix glycoprotein, tenascin, during cartilage and bone development in rodents has been investigated by immunohistochemistry. Tenascin was present in condensing mesenchyme of cartilage anlagen, but not in the surrounding mesenchyme. In fully differentiated cartilages, tenascin was only present in the perichondrium. In bones that form by endochondral ossification, tenascin reappeared around the osteogenic cells invading the cartilage model. Tenascin was also present in the condensing mesenchyme of developing bones that form by intramembranous ossification and later was present around the spicules of forming bone. Tenascin was absent from mature bone matrix but persisted on periosteal and endosteal surfaces. Immunofluorescent staining of wing bud cultures from chick embryos showed large amounts of tenascin in the forming cartilage nodules. Cultures grown on a substrate of tenascin produced more cartilage nodules than cultures grown on tissue culture plastic. Tenascin in the culture medium inhibited the attachment of wing bud cells to fibronectin-coated substrates. We propose that tenascin plays an important role in chondrogenesis by modulating fibronectin-cell interactions and causing cell rounding and condensation.

2020 ◽  
Author(s):  
Anna M. McDermott ◽  
Emily A. Eastburn ◽  
Daniel J. Kelly ◽  
Joel D. Boerckel

AbstractBone development and repair occur by endochondral ossification of a cartilage anlage, or template. Endochondral ossification is regulated by mechanical cues. Recently, we found that in vivo mechanical loading promoted regeneration of large bone defects through endochondral ossification, in a manner dependent on the timing of load initiation. Here, we have developed an in vitro model of the cartilage anlage to test whether the chondrogenic differentiation state alters the response to dynamic mechanical compression. We cultured human bone marrow stromal cells (hMSCs) at high cell density in fibrin hydrogels under chondrogenic priming conditions for periods of 0, 2, 4, or 6 weeks prior to two weeks of dynamic mechanical loading. Samples were evaluated by biomechanical testing, biochemical analysis of collagen and glycosaminoglycan (GAG) deposition, gene expression analysis, and immunohistological analysis, in comparison to time-matched controls cultured under static conditions. We found that dynamic loading increased the mechanical stiffness of engineered anlagen in a manner dependent on the duration of chondrogenic priming prior to load initiation. For chondrogenic priming times of 2 weeks or greater, dynamic loading enhanced the expression of type II collagen and aggrecan, although no significant changes in overall levels of matrix deposition was observed. For priming periods less than 4 weeks, dynamic loading generally supressed markers of hypertrophy and osteogenesis, although this was not observed if the priming period was extended to 6 weeks, where loading instead enhanced the expression of type X collagen. Taken together, these data demonstrate that the duration of chondrogenic priming regulates the endochondral response to dynamic mechanical compression in vitro, which may contribute to the effects of mechanical loading on endochondral bone development, repair, and regeneration in vivo.


Author(s):  
С.В. Калиш ◽  
С.В. Лямина ◽  
А.А. Раецкая ◽  
И.Ю. Малышев

Цель исследования. Репрограммирование М1 фенотипа макрофагов с ингибированными факторами транскрипции М2 фенотипа STAT3, STAТ6 и SMAD и оценка их влияния на развитие карциномы Эрлиха (КЭ) in vitro и in vivo. Методика. Рост опухоли иницировали in vitro путем добавления клеток КЭ в среду культивирования RPMI-1640 и in vivo путем внутрибрюшинной инъекции клеток КЭ мышам. Результаты. Установлено, что M1макрофаги и in vitro, и in vivo оказывают выраженный противоопухолевый эффект, который превосходит антиопухолевые эффекты М1, M1, M1 макрофагов и цисплатина. Заключение. М1 макрофаги с ингибированными STAT3, STAT6 и/или SMAD3 эффективно ограничивают рост опухоли. Полученные данные обосновывают разработку новой технологии противоопухолевой клеточной терапии. Objective. Reprogramming of M1 macrophage phenotype with inhibited M2 phenotype transcription factors, such as STAT3, STAT6 and SMAD and assess their impact on the development of Ehrlich carcinoma (EC) in vitro and in vivo . Methods. Tumor growth in vitro was initiated by addition of EC cells in RPMI-1640 culture medium and in vivo by intraperitoneal of EC cell injection into mice. Results. It was found that M1 macrophages have a pronounced anti-tumor effect in vitro , and in vivo , which was greater than anti-tumor effects of M1, M1, M1 macrophages and cisplatin. Conclusion. M1 macrophages with inhibited STAT3, STAT6 and/or SMAD3 effectively restrict tumor growth. The findings justify the development of new anti-tumor cell therapy technology.


Author(s):  
Bruna O. S. Câmara ◽  
Bruno M. Bertassoli ◽  
Natália M. Ocarino ◽  
Rogéria Serakides

The use of stem cells in cell therapies has shown promising results in the treatment of several diseases, including diabetes mellitus, in both humans and animals. Mesenchymal stem cells (MSCs) can be isolated from various locations, including bone marrow, adipose tissues, synovia, muscles, dental pulp, umbilical cords, and the placenta. In vitro, by manipulating the composition of the culture medium or transfection, MSCs can differentiate into several cell lineages, including insulin-producing cells (IPCs). Unlike osteogenic, chondrogenic, and adipogenic differentiation, for which the culture medium and time are similar between studies, studies involving the induction of MSC differentiation in IPCs differ greatly. This divergence is usually evident in relation to the differentiation technique used, the composition of the culture medium, the cultivation time, which can vary from a few hours to several months, and the number of steps to complete differentiation. However, although there is no “gold standard” differentiation medium composition, most prominent studies mention the use of nicotinamide, exedin-4, ß-mercaptoethanol, fibroblast growth factor b (FGFb), and glucose in the culture medium to promote the differentiation of MSCs into IPCs. Therefore, the purpose of this review is to investigate the stages of MSC differentiation into IPCs both in vivo and in vitro, as well as address differentiation techniques and molecular actions and mechanisms by which some substances, such as nicotinamide, exedin-4, ßmercaptoethanol, FGFb, and glucose, participate in the differentiation process.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1414
Author(s):  
Josep M. Cambra ◽  
Emilio A. Martinez ◽  
Heriberto Rodriguez-Martinez ◽  
Maria A. Gil ◽  
Cristina Cuello

The development of chemically defined media is a growing trend in in vitro embryo production (IVP). Recently, traditional undefined culture medium with bovine serum albumin (BSA) has been successfully replaced by a chemically defined medium using substances with embryotrophic properties such as platelet factor 4 (PF4). Although the use of this medium sustains IVP, the impact of defined media on the embryonic transcriptome has not been fully elucidated. This study analyzed the transcriptome of porcine IVP blastocysts, cultured in defined (PF4 group) and undefined media (BSA group) by microarrays. In vivo-derived blastocysts (IVV group) were used as a standard of maximum embryo quality. The results showed no differentially expressed genes (DEG) between the PF4 and BSA groups. However, a total of 2780 and 2577 DEGs were detected when comparing the PF4 or the BSA group with the IVV group, respectively. Most of these genes were common in both in vitro groups (2132) and present in some enriched pathways, such as cell cycle, lysosome and/or metabolic pathways. These results show that IVP conditions strongly affect embryo transcriptome and that the defined culture medium with PF4 is a guaranteed replacement for traditional culture with BSA.


2007 ◽  
Vol 53 (3) ◽  
pp. 380-390 ◽  
Author(s):  
Pious Thomas ◽  
Sima Kumari ◽  
Ganiga K. Swarna ◽  
T.K.S. Gowda

Fourteen distinct bacterial clones were isolated from surface-sterilized shoot tips (~1 cm) of papaya (Carica papaya L. ‘Surya’) planted on Murashige and Skoog (MS)-based papaya culture medium (23/50 nos.) during the 2–4 week period following in vitro culturing. These isolates were ascribed to six Gram-negative genera, namely Pantoea ( P. ananatis ), Enterobacter ( E. cloacae ), Brevundimonas ( B. aurantiaca ), Sphingomonas , Methylobacterium ( M. rhodesianum ), and Agrobacterium ( A. tumefaciens ) or two Gram-positive genera, Microbacterium ( M. esteraromaticum ) and Bacillus ( B. benzoevorans ) based on 16S rDNA sequence analysis. Pantoea ananatis was the most frequently isolated organism (70% of the cultures) followed by B. benzoevorans (13%), while others were isolated from single stocks. Bacteria-harboring in vitro cultures often showed a single organism. Pantoea, Enterobacter, and Agrobacterium spp. grew actively on MS-based normal papaya medium, while Microbacterium, Brevundimonas, Bacillus, Sphingomonas, and Methylobacterium spp. failed to grow in the absence of host tissue. Supplying MS medium with tissue extract enhanced the growth of all the organisms in a dose-dependent manner, indicating reliance of the endophyte on its host. Inoculation of papaya seeds with the endophytes (20 h at OD550 = 0.5) led to delayed germination or slow seedling growth initially. However, the inhibition was overcome by 3 months and the seedlings inoculated with Pantoea, Microbacterium, or Sphingomonas spp. displayed significantly better root and shoot growths.


Development ◽  
1968 ◽  
Vol 19 (3) ◽  
pp. 407-414
Author(s):  
R. Christy Armstrong ◽  
Joel J. Elias

Abnormalities of the ocular system which appear in organ culture in Waymouth's medium with freshly added glutamine (Armstrong & Elias, 1968) resemble those caused by transitory pteryolglutamic acid (PGA or folic acid) deficiency in vivo (Armstrong & Monie, 1966). The configurations of such malformations as lens herniations, retinal diverticula, and rosette-like formations of the retina are remarkably similar in both cases. The experiments reported in this paper were undertaken in an effort to understand the mechanisms involved in the production of similar abnormalities by two very different experimental conditions: the addition of glutamine in vitro and the transitory deficiency of PGA in vivo. One series of experiments involved the effects of manipulation of the PGA and glutamine content of the culture medium on eye development in vitro. Parallel studies on PGA-deficiency in vivo were undertaken in conjunction with organ-culture experiments in order to compare the effects on abnormal eye morphogenesis.


2017 ◽  
Vol 52 (12) ◽  
pp. 1140-1148 ◽  
Author(s):  
Patrícia Elias Haddad ◽  
Luis Garrigós Leite ◽  
Cleusa Maria Mantovanello Lucon ◽  
Ricardo Harakava

Abstract: The objective of this work was to evaluate, in vitro and in vivo, the potential of Trichoderma spp. strains to control Sclerotinia sclerotiorum in soybeans (Glycine max) and to perform the molecular identification of the best perfoming strains. The effect of 120 strains of Trichoderma spp. on the viability of S. sclerotiorum sclerotia was evaluated in vitro through immersion in suspension of conidia from the antagonists and plating in culture medium. The best performing strains were evaluated in vivo, in a greenhouse, for control of the pathogen inoculated on 'Pintado' soybean seeds and plants. Of the 120 strains tested in vitro, 22 strains of Trichoderma spp. caused 100% inhibition of sclerotia germination. In the greenhouse, five strains inhibited the negative effect of the pathogen on seed germination and two strains increased in up to 67% plant dry matter. The best performing strains were identified as T. koningiopsis (3 strains), T. asperelloides (3), T. atroviride (2), and T. virens (1). Trichoderma strains are able to protect soybean plants from the harmful effect of S. sclerotiorum and, at the same time, they can promote the growth of the aerial part in greenhouse conditions.


2012 ◽  
Vol 1417 ◽  
Author(s):  
Titilayo Moloye ◽  
Christopher Batich

ABSTRACTCylindrical porous polycaprolactone (PCL) scaffolds containing 25, 35, and 50 wt% demineralized bone matrix (DBM) were fabricated using a salt-leaching method for application in bone engineering. In the present work, PCL-DBM scaffolds were monitored for calcium and phosphorus deposition in both deionized (DI) water and simulated body fluid (SBF) for time periods of 5, 10, 15, and 20 days at 37°C under constant rotation. An in vitro assessment of the bioactivity of synthetic materials using SBF under physiological conditions can be used as a barometer of scaffold behavior in vivo. DBM, an osteoinductive material, was used to gauge if there was a correlation between the concentration of DBM within a scaffold and the apatite formation on its surface. Biochemical assays, alizarin red S staining, and scanning electron microscopy (SEM) with elemental analysis of calcium and phosphorus were consistent in that they confirmed that PCL scaffolds containing 35 wt% DBM in SBF at 14 days post-immersion showed signs of early apatite formation.


Sign in / Sign up

Export Citation Format

Share Document